Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Distributed stabilisation of spatially invariant systems: positive polynomial approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00382623" target="_blank" >RIV/67985556:_____/13:00382623 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s11045-011-0152-5" target="_blank" >http://dx.doi.org/10.1007/s11045-011-0152-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11045-011-0152-5" target="_blank" >10.1007/s11045-011-0152-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Distributed stabilisation of spatially invariant systems: positive polynomial approach

  • Popis výsledku v původním jazyce

    The paper gives a computationally feasible characterisation of spatially distributed controllers stabilising a linear spatially invariant system, that is, a system described by linear partial differential equations with coefficients independent on time and location. With one spatial and one temporal variable such a system can be modelled by a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stablebi-variate polynomial c. The paper is built on the relationship between stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials.For low-order discrete-time systems it is shown that a linearising factorisation of the polynomial Schur-Cohn matrix exists. For higher order plants and/or controllers such factorisation is not possible as the solution set is non-convex a

  • Název v anglickém jazyce

    Distributed stabilisation of spatially invariant systems: positive polynomial approach

  • Popis výsledku anglicky

    The paper gives a computationally feasible characterisation of spatially distributed controllers stabilising a linear spatially invariant system, that is, a system described by linear partial differential equations with coefficients independent on time and location. With one spatial and one temporal variable such a system can be modelled by a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stablebi-variate polynomial c. The paper is built on the relationship between stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials.For low-order discrete-time systems it is shown that a linearising factorisation of the polynomial Schur-Cohn matrix exists. For higher order plants and/or controllers such factorisation is not possible as the solution set is non-convex a

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Multidimensional Systems and Signal Processing

  • ISSN

    1573-0824

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    3-21

  • Kód UT WoS článku

    000312715000002

  • EID výsledku v databázi Scopus