Steganalysis by Subtractive Pixel Adjacency Matrix
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00173901" target="_blank" >RIV/68407700:21230/10:00173901 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Steganalysis by Subtractive Pixel Adjacency Matrix
Popis výsledku v původním jazyce
This paper presents a method for detection of steganographic methods that embed in the spatial domain by adding a low-amplitude independent stego signal, an example of which is least significant bit (LSB) matching. First, arguments are provided for modeling the differences between adjacent pixels using first-order and second-order Markov chains. Subsets of sample transition probability matrices are then used as features for a steganalyzer implemented by support vector machines. The major part of experiments, performed on four diverse image databases, focuses on evaluation of detection of LSB matching. The comparison to prior art reveals that the presented feature set offers superior accuracy in detecting LSB matching. Even though the feature set was developed specifically for spatial domain steganalysis, by constructing steganalyzers for ten algorithms for JPEG images, it is demonstrated that the features detect steganography in the transform domain as well.
Název v anglickém jazyce
Steganalysis by Subtractive Pixel Adjacency Matrix
Popis výsledku anglicky
This paper presents a method for detection of steganographic methods that embed in the spatial domain by adding a low-amplitude independent stego signal, an example of which is least significant bit (LSB) matching. First, arguments are provided for modeling the differences between adjacent pixels using first-order and second-order Markov chains. Subsets of sample transition probability matrices are then used as features for a steganalyzer implemented by support vector machines. The major part of experiments, performed on four diverse image databases, focuses on evaluation of detection of LSB matching. The comparison to prior art reveals that the presented feature set offers superior accuracy in detecting LSB matching. Even though the feature set was developed specifically for spatial domain steganalysis, by constructing steganalyzers for ten algorithms for JPEG images, it is demonstrated that the features detect steganography in the transform domain as well.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ME10051" target="_blank" >ME10051: Autonomní analýza škodlivého kódu pomocí víceúrovňové detekce anomálií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Information Forensics and Security
ISSN
1556-6013
e-ISSN
—
Svazek periodika
2
Číslo periodika v rámci svazku
—
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000277777200002
EID výsledku v databázi Scopus
—