Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bootstrap Optical Flow Confidence and Uncertainty Measure

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00181658" target="_blank" >RIV/68407700:21230/11:00181658 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.cviu.2011.06.008" target="_blank" >http://dx.doi.org/10.1016/j.cviu.2011.06.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cviu.2011.06.008" target="_blank" >10.1016/j.cviu.2011.06.008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bootstrap Optical Flow Confidence and Uncertainty Measure

  • Popis výsledku v původním jazyce

    We address the problem of estimating the uncertainty of optical flow algorithm results. Our method estimates the error magnitude at all points in the image. It can be used as a confidence measure. It is based on bootstrap resampling, which is a computational statistical inference technique based on repeating the optical flow calculation several times for different randomly chosen subsets of pixel contributions. As few as 10 repetitions are enough to obtain useful estimates of geometrical and angular errors. We use the combined local global optical flow method (CLG) which generalizes both Lucas-Kanade and Horn-Schunck type methods. However, the bootstrap method is very general and can be applied to almost any optical flow algorithm that can be formulated as a minimization problem. We show experimentally on synthetic as well as real video sequences with known ground truth that the bootstrap method performs better than all other confidence measures tested.

  • Název v anglickém jazyce

    Bootstrap Optical Flow Confidence and Uncertainty Measure

  • Popis výsledku anglicky

    We address the problem of estimating the uncertainty of optical flow algorithm results. Our method estimates the error magnitude at all points in the image. It can be used as a confidence measure. It is based on bootstrap resampling, which is a computational statistical inference technique based on repeating the optical flow calculation several times for different randomly chosen subsets of pixel contributions. As few as 10 repetitions are enough to obtain useful estimates of geometrical and angular errors. We use the combined local global optical flow method (CLG) which generalizes both Lucas-Kanade and Horn-Schunck type methods. However, the bootstrap method is very general and can be applied to almost any optical flow algorithm that can be formulated as a minimization problem. We show experimentally on synthetic as well as real video sequences with known ground truth that the bootstrap method performs better than all other confidence measures tested.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Vision and Image Understanding

  • ISSN

    1077-3142

  • e-ISSN

  • Svazek periodika

    115

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1449-1462

  • Kód UT WoS článku

    000294395900008

  • EID výsledku v databázi Scopus