Bootstrap Optical Flow Confidence and Uncertainty Measure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00181658" target="_blank" >RIV/68407700:21230/11:00181658 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cviu.2011.06.008" target="_blank" >http://dx.doi.org/10.1016/j.cviu.2011.06.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cviu.2011.06.008" target="_blank" >10.1016/j.cviu.2011.06.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bootstrap Optical Flow Confidence and Uncertainty Measure
Popis výsledku v původním jazyce
We address the problem of estimating the uncertainty of optical flow algorithm results. Our method estimates the error magnitude at all points in the image. It can be used as a confidence measure. It is based on bootstrap resampling, which is a computational statistical inference technique based on repeating the optical flow calculation several times for different randomly chosen subsets of pixel contributions. As few as 10 repetitions are enough to obtain useful estimates of geometrical and angular errors. We use the combined local global optical flow method (CLG) which generalizes both Lucas-Kanade and Horn-Schunck type methods. However, the bootstrap method is very general and can be applied to almost any optical flow algorithm that can be formulated as a minimization problem. We show experimentally on synthetic as well as real video sequences with known ground truth that the bootstrap method performs better than all other confidence measures tested.
Název v anglickém jazyce
Bootstrap Optical Flow Confidence and Uncertainty Measure
Popis výsledku anglicky
We address the problem of estimating the uncertainty of optical flow algorithm results. Our method estimates the error magnitude at all points in the image. It can be used as a confidence measure. It is based on bootstrap resampling, which is a computational statistical inference technique based on repeating the optical flow calculation several times for different randomly chosen subsets of pixel contributions. As few as 10 repetitions are enough to obtain useful estimates of geometrical and angular errors. We use the combined local global optical flow method (CLG) which generalizes both Lucas-Kanade and Horn-Schunck type methods. However, the bootstrap method is very general and can be applied to almost any optical flow algorithm that can be formulated as a minimization problem. We show experimentally on synthetic as well as real video sequences with known ground truth that the bootstrap method performs better than all other confidence measures tested.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Vision and Image Understanding
ISSN
1077-3142
e-ISSN
—
Svazek periodika
115
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1449-1462
Kód UT WoS článku
000294395900008
EID výsledku v databázi Scopus
—