Optimizing Flow Sampling for Network Anomaly Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00181849" target="_blank" >RIV/68407700:21230/11:00181849 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14610/11:00053092
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimizing Flow Sampling for Network Anomaly Detection
Popis výsledku v původním jazyce
Sampling techniques are widely employed in high-speed network traffic monitoring to allow the analysis of high traffic volumes with limited resources. Sampling has measurable negative impact on the accuracy of network anomaly detection methods. In our work, we build an integrated model which puts the sampling into the context of the anomaly detection used in the subsequent processing. Using this model, we show that it is possible to perform very efficient sampling with limited impact on traffic featuredistributions, thus minimizing the decrease of anomaly detection efficiency. Specifically, we propose an adaptive, feature-aware statistical sampling technique and compare it both formally and empirically with other known sampling techniques - random flow sampling and selective sampling. We study the impact of these sampling techniques on particular anomaly detection methods used in a network behavior analysis system.
Název v anglickém jazyce
Optimizing Flow Sampling for Network Anomaly Detection
Popis výsledku anglicky
Sampling techniques are widely employed in high-speed network traffic monitoring to allow the analysis of high traffic volumes with limited resources. Sampling has measurable negative impact on the accuracy of network anomaly detection methods. In our work, we build an integrated model which puts the sampling into the context of the anomaly detection used in the subsequent processing. Using this model, we show that it is possible to perform very efficient sampling with limited impact on traffic featuredistributions, thus minimizing the decrease of anomaly detection efficiency. Specifically, we propose an adaptive, feature-aware statistical sampling technique and compare it both formally and empirically with other known sampling techniques - random flow sampling and selective sampling. We study the impact of these sampling techniques on particular anomaly detection methods used in a network behavior analysis system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Wireless Communications and Mobile Computing 2011
ISBN
978-1-4244-9539-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1304-1309
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Istanbul
Datum konání akce
5. 7. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—