Accurate Modeling of Unusual Electronic Circuit Elements with Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00184468" target="_blank" >RIV/68407700:21230/11:00184468 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accurate Modeling of Unusual Electronic Circuit Elements with Artificial Neural Networks
Popis výsledku v původním jazyce
Nowadays, there are many electronic structures for which their models are necessary. However, in the recent PSpice programs, only a class of five types of the MESFET model is available. In the paper, a new method is suggested for modeling electronic structures by exclusive neural networks, or by corrective neural networks working attached to a modified analytic model. The accuracy the analytic model is assessed by extracting the model parameters of MESFET, pHEMT, and microwave varactors. The accuracy ofprocedures that use the neural networks is assessed by extracting model parameters in static and dynamic domains. First, an approximation of the pHEMT output characteristics is carried out by means of both exclusive and corrective networks; and second,an approximation of the C-V function of an avalanche photodiode is performed by the exclusive network. Last, the memristor characteristic with an extraordinary hysteresis is approximated by a set of cooperative artificial neural networks.
Název v anglickém jazyce
Accurate Modeling of Unusual Electronic Circuit Elements with Artificial Neural Networks
Popis výsledku anglicky
Nowadays, there are many electronic structures for which their models are necessary. However, in the recent PSpice programs, only a class of five types of the MESFET model is available. In the paper, a new method is suggested for modeling electronic structures by exclusive neural networks, or by corrective neural networks working attached to a modified analytic model. The accuracy the analytic model is assessed by extracting the model parameters of MESFET, pHEMT, and microwave varactors. The accuracy ofprocedures that use the neural networks is assessed by extracting model parameters in static and dynamic domains. First, an approximation of the pHEMT output characteristics is carried out by means of both exclusive and corrective networks; and second,an approximation of the C-V function of an avalanche photodiode is performed by the exclusive network. Last, the memristor characteristic with an extraordinary hysteresis is approximated by a set of cooperative artificial neural networks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F10%2F1614" target="_blank" >GAP102/10/1614: Memristivní, memkapacitivní a meminduktivní systémy: základní výzkum, modelování a simulace</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2nd Conference on Circuits, Systems, Control, Signals
ISBN
978-1-61804-035-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
150-155
Název nakladatele
World Scientific and Engineering Academy and Society
Místo vydání
Athens
Místo konání akce
Praha
Datum konání akce
26. 9. 2011
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—