Characterization of Electronic Circuit Elements by Exclusive and Corrective Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00193966" target="_blank" >RIV/68407700:21230/12:00193966 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.naun.org/multimedia/NAUN//mcs/index.html" target="_blank" >http://www.naun.org/multimedia/NAUN//mcs/index.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterization of Electronic Circuit Elements by Exclusive and Corrective Artificial Neural Networks
Popis výsledku v původním jazyce
At present, there are many novel electronic circuit elements for which their nonlinear models for CAD are necessary, especially for microwave ones. However, in the PSpice-family programs, only a class of several classic types of the MESFET model is available for the microwave area. In the paper, a novel reliable way is suggested for modeling various electronic structures by exclusive neural networks, or by corrective neural networks working attached to a modified analytic model. The accuracy of the proposed modification of the analytic model is assessed by extracting the model parameters of GaAs MESFET, AlGaAs/InGaAs/GaAs pHEMT, and GaAs microwave varactors. First, a precise approximation of the pHEMT output characteristics is carried out by means of both exclusive and corrective artificial neural networks; and second, an approximation of the capacitance (C-V) function of the SACM InGaAs/InP avalanche photodiode is performed by the exclusive neural network. Further, the Pt-TiO_(2-x)-Pt
Název v anglickém jazyce
Characterization of Electronic Circuit Elements by Exclusive and Corrective Artificial Neural Networks
Popis výsledku anglicky
At present, there are many novel electronic circuit elements for which their nonlinear models for CAD are necessary, especially for microwave ones. However, in the PSpice-family programs, only a class of several classic types of the MESFET model is available for the microwave area. In the paper, a novel reliable way is suggested for modeling various electronic structures by exclusive neural networks, or by corrective neural networks working attached to a modified analytic model. The accuracy of the proposed modification of the analytic model is assessed by extracting the model parameters of GaAs MESFET, AlGaAs/InGaAs/GaAs pHEMT, and GaAs microwave varactors. First, a precise approximation of the pHEMT output characteristics is carried out by means of both exclusive and corrective artificial neural networks; and second, an approximation of the capacitance (C-V) function of the SACM InGaAs/InP avalanche photodiode is performed by the exclusive neural network. Further, the Pt-TiO_(2-x)-Pt
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F10%2F1614" target="_blank" >GAP102/10/1614: Memristivní, memkapacitivní a meminduktivní systémy: základní výzkum, modelování a simulace</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Mathematics and Computers in Simulation
ISSN
1998-0159
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
136-143
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—