Detection of unseen patches trackable by linear predictors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00187100" target="_blank" >RIV/68407700:21230/11:00187100 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of unseen patches trackable by linear predictors
Popis výsledku v původním jazyce
Linear predictors (LPs) are being used for tracking because of their computational efficiency which is better than steepest descent methods (e.g. Lucas-Kanade). The only disadvantage of LPs is the necessary learning phase which hinders the predictors applicability as a general patch tracker. We address this limitation and propose to learn a bank of LPs off-line and develop an on-line detector which selects image regions that could be tracked by some predictor from the bank. The proposed detector differssignificantly from the usual solutions that attempt to find the closest match between a candidate patch and a database of exemplars. We construct the detector directly from the learned linear predictor. The detector positively detects the learned patches, but also many other image patches, which were not used in LP learning phase. This means, that the LP is able to track also previously unseen image patches, the appearances of which are often significantly diverse from the patches used.
Název v anglickém jazyce
Detection of unseen patches trackable by linear predictors
Popis výsledku anglicky
Linear predictors (LPs) are being used for tracking because of their computational efficiency which is better than steepest descent methods (e.g. Lucas-Kanade). The only disadvantage of LPs is the necessary learning phase which hinders the predictors applicability as a general patch tracker. We address this limitation and propose to learn a bank of LPs off-line and develop an on-line detector which selects image regions that could be tracked by some predictor from the bank. The proposed detector differssignificantly from the usual solutions that attempt to find the closest match between a candidate patch and a database of exemplars. We construct the detector directly from the learned linear predictor. The detector positively detects the learned patches, but also many other image patches, which were not used in LP learning phase. This means, that the LP is able to track also previously unseen image patches, the appearances of which are often significantly diverse from the patches used.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVWW '11: Proceedings of the 16th Computer Vision Winter Workshop
ISBN
978-3-85125-129-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
107-114
Název nakladatele
Graz University of Technology
Místo vydání
Graz
Místo konání akce
Mitterberg
Datum konání akce
2. 2. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—