Visual localization by linear combination of image descriptors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00187150" target="_blank" >RIV/68407700:21230/11:00187150 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Visual localization by linear combination of image descriptors
Popis výsledku v původním jazyce
We seek to predict the GPS location of a query image given a database of images localized on a map with known GPS locations. The contributions of this work are three-fold: (1) we formulate the image-based localization problem as a regression on an imagegraph with images as nodes and edges connecting close-by images; (2) we design a novel image matching procedure, which computes similarity between the query and pairs of database images using edges of the graph and considering linear combinations of their feature vectors. This improves generalization to unseen viewpoints and illumination conditions, while reducing the database size; (3) we demonstrate that the query location can be predicted by interpolating locations of matched images in the graph without the costly estimation of multi-view geometry. We demonstrate benefits of the proposed image matching scheme on the standard Oxford building benchmark, and show localization results on a database of 8,999 panoramic Google Street View.
Název v anglickém jazyce
Visual localization by linear combination of image descriptors
Popis výsledku anglicky
We seek to predict the GPS location of a query image given a database of images localized on a map with known GPS locations. The contributions of this work are three-fold: (1) we formulate the image-based localization problem as a regression on an imagegraph with images as nodes and edges connecting close-by images; (2) we design a novel image matching procedure, which computes similarity between the query and pairs of database images using edges of the graph and considering linear combinations of their feature vectors. This improves generalization to unseen viewpoints and illumination conditions, while reducing the database size; (3) we demonstrate that the query location can be predicted by interpolating locations of matched images in the graph without the costly estimation of multi-view geometry. We demonstrate benefits of the proposed image matching scheme on the standard Oxford building benchmark, and show localization results on a database of 8,999 panoramic Google Street View.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)
ISBN
978-1-4673-0063-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
102-109
Název nakladatele
IEEE Computer Society Press
Místo vydání
Los Alamitos
Místo konání akce
Barcelona
Datum konání akce
6. 11. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—