Adaptive fuzzy control algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00193029" target="_blank" >RIV/68407700:21230/12:00193029 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive fuzzy control algorithms
Popis výsledku v původním jazyce
In past few years a great progress has been achieved in the area of adaptive control of nonlinear systems. Since a general solution of the corresponding problems is usually hard to find an approximation by fuzzy systems offers sometimes a feasible way how to deal with them. Whereas Mamdani fuzzy systems adopt in most cases the sliding mode control approach or are combined with neural networks, adaptive control of Takagi-Sugeno (TS) fuzzy systems relies mostly on Lyapunov approach. The usual choice for Lyapunov function is a quadratic one, however piecewise quadratic or fuzzy Lyapunov functions that are used outside the adaptive framework offer a great potential for improving the current results. Although control of TS fuzzy systems typically utilizes Parallel Distributed Compensation (PDC) a non-PDC concept can be useful in some cases [4]. All the mentioned approaches lead to Linear Matrix Inequalities solved by convex programming techniques. The idea of using polynomial models in the
Název v anglickém jazyce
Adaptive fuzzy control algorithms
Popis výsledku anglicky
In past few years a great progress has been achieved in the area of adaptive control of nonlinear systems. Since a general solution of the corresponding problems is usually hard to find an approximation by fuzzy systems offers sometimes a feasible way how to deal with them. Whereas Mamdani fuzzy systems adopt in most cases the sliding mode control approach or are combined with neural networks, adaptive control of Takagi-Sugeno (TS) fuzzy systems relies mostly on Lyapunov approach. The usual choice for Lyapunov function is a quadratic one, however piecewise quadratic or fuzzy Lyapunov functions that are used outside the adaptive framework offer a great potential for improving the current results. Although control of TS fuzzy systems typically utilizes Parallel Distributed Compensation (PDC) a non-PDC concept can be useful in some cases [4]. All the mentioned approaches lead to Linear Matrix Inequalities solved by convex programming techniques. The idea of using polynomial models in the
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F12%2F1187" target="_blank" >GAP103/12/1187: Identifikace stochastických, nelineárních systémů pro pokročilé řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů