Nonlinear modelling and optimal control via Takagi-Sugeno fuzzy techniques: A quadrotor stabilization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10244861" target="_blank" >RIV/61989100:27240/20:10244861 - isvavai.cz</a>
Výsledek na webu
<a href="http://iris.elf.stuba.sk/JEEEC/rtoc.html" target="_blank" >http://iris.elf.stuba.sk/JEEEC/rtoc.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/jee-2020-0001" target="_blank" >10.2478/jee-2020-0001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonlinear modelling and optimal control via Takagi-Sugeno fuzzy techniques: A quadrotor stabilization
Popis výsledku v původním jazyce
Using the principles of Takagi-Sugeno fuzzy modelling allows the integration of flexible fuzzy approaches and rigorous mathematical tools of linear system theory into one common framework. The rule-based T-S fuzzy model splits a nonlinear system into several linear subsystems. Parallel Distributed Compensation (PDC) controller synthesis uses these T-S fuzzy model rules. The resulting fuzzy controller is nonlinear, based on fuzzy aggregation of state controllers of individual linear subsystems. The system is optimized by the linear quadratic control (LQC) method, its stability is analysed using the Lyapunov method. Stability conditions are guaranteed by a system of linear matrix inequalities (LMIs) formulated and solved for the closed loop system with the proposed PDC controller. The additional GA optimization procedure is introduced, and a new type of its fitness function is proposed to improve the closed-loop system performance.
Název v anglickém jazyce
Nonlinear modelling and optimal control via Takagi-Sugeno fuzzy techniques: A quadrotor stabilization
Popis výsledku anglicky
Using the principles of Takagi-Sugeno fuzzy modelling allows the integration of flexible fuzzy approaches and rigorous mathematical tools of linear system theory into one common framework. The rule-based T-S fuzzy model splits a nonlinear system into several linear subsystems. Parallel Distributed Compensation (PDC) controller synthesis uses these T-S fuzzy model rules. The resulting fuzzy controller is nonlinear, based on fuzzy aggregation of state controllers of individual linear subsystems. The system is optimized by the linear quadratic control (LQC) method, its stability is analysed using the Lyapunov method. Stability conditions are guaranteed by a system of linear matrix inequalities (LMIs) formulated and solved for the closed loop system with the proposed PDC controller. The additional GA optimization procedure is introduced, and a new type of its fitness function is proposed to improve the closed-loop system performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of electrical engineering
ISSN
1335-3632
e-ISSN
—
Svazek periodika
71
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000521829400001
EID výsledku v databázi Scopus
—