Empirical Evidence of the Applicability of Functional Clustering through Gene Expression Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00193189" target="_blank" >RIV/68407700:21230/12:00193189 - isvavai.cz</a>
Výsledek na webu
<a href="http://delivery.acm.org/10.1145/2190000/2189819/ttb2012030788.pdf?ip=147.32.80.13&acc=ACTIVE%20SERVICE&CFID=105155070&CFTOKEN=54614029&__acm__=1337931276_cc8c68fee89e41aac8fe30bb2da302e7" target="_blank" >http://delivery.acm.org/10.1145/2190000/2189819/ttb2012030788.pdf?ip=147.32.80.13&acc=ACTIVE%20SERVICE&CFID=105155070&CFTOKEN=54614029&__acm__=1337931276_cc8c68fee89e41aac8fe30bb2da302e7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCBB.2012.23" target="_blank" >10.1109/TCBB.2012.23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Empirical Evidence of the Applicability of Functional Clustering through Gene Expression Classification
Popis výsledku v původním jazyce
The availability of a great range of prior biological knowledge about the roles and functions of genes and gene-gene interactions allows us to simplify the analysis of gene expression data to make it more robust, compact and interpretable. Here, we objectively analyze the applicability of functional clustering for the identification of groups of functionally related genes. The analysis is performed in terms of gene expression classification and uses predictive accuracy as an unbiased performance measure. Features of biological samples that originally corresponded to genes are replaced by features that correspond to the centroids of the gene clusters and are then used for classifier learning. Using ten benchmark datasets, we demonstrate that functionalclustering significantly outperforms random clustering without biological relevance. We also show that functional clustering performs comparably to gene expression clustering, which groups genes according to the similarity of their expres
Název v anglickém jazyce
Empirical Evidence of the Applicability of Functional Clustering through Gene Expression Classification
Popis výsledku anglicky
The availability of a great range of prior biological knowledge about the roles and functions of genes and gene-gene interactions allows us to simplify the analysis of gene expression data to make it more robust, compact and interpretable. Here, we objectively analyze the applicability of functional clustering for the identification of groups of functionally related genes. The analysis is performed in terms of gene expression classification and uses predictive accuracy as an unbiased performance measure. Features of biological samples that originally corresponded to genes are replaced by features that correspond to the centroids of the gene clusters and are then used for classifier learning. Using ten benchmark datasets, we demonstrate that functionalclustering significantly outperforms random clustering without biological relevance. We also show that functional clustering performs comparably to gene expression clustering, which groups genes according to the similarity of their expres
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EB - Genetika a molekulární biologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Computational Biology and Bioinformatics
ISSN
1545-5963
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
788-798
Kód UT WoS článku
000301293900014
EID výsledku v databázi Scopus
—