Comparative Evaluation of Set-level Techniques in Predictive Classification of Gene Expression Samples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00193325" target="_blank" >RIV/68407700:21230/12:00193325 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.biomedcentral.com" target="_blank" >http://www.biomedcentral.com</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1471-2105-13-S10-S15" target="_blank" >10.1186/1471-2105-13-S10-S15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Evaluation of Set-level Techniques in Predictive Classification of Gene Expression Samples
Popis výsledku v původním jazyce
Background: Analysis of gene expression data in terms of a priori defined gene sets has recently received significant attention as this approach typically yields more compact and interpretable results than those produced by traditional methods that relyon individual genes. The set level strategy can also be adopted with similar benefits in predictive classification tasks accomplished with machine learning algorithms. Initial studies into the predictive performance of set level classifiers have yieldedrather controversial results. The goal of this study is to provide a more conclusive evaluation by testing various components of the set level framework within a large collection of machine learning experiments. Results: Genuine curated gene sets constitute better features for classification than sets assembled without biological relevance. For identifying the best gene sets for classification, the Global test outperforms the gene set methods GSEA and SAM GS as well as two generic featur
Název v anglickém jazyce
Comparative Evaluation of Set-level Techniques in Predictive Classification of Gene Expression Samples
Popis výsledku anglicky
Background: Analysis of gene expression data in terms of a priori defined gene sets has recently received significant attention as this approach typically yields more compact and interpretable results than those produced by traditional methods that relyon individual genes. The set level strategy can also be adopted with similar benefits in predictive classification tasks accomplished with machine learning algorithms. Initial studies into the predictive performance of set level classifiers have yieldedrather controversial results. The goal of this study is to provide a more conclusive evaluation by testing various components of the set level framework within a large collection of machine learning experiments. Results: Genuine curated gene sets constitute better features for classification than sets assembled without biological relevance. For identifying the best gene sets for classification, the Global test outperforms the gene set methods GSEA and SAM GS as well as two generic featur
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F1665" target="_blank" >GA201/09/1665: Překonání propasti mezi systémovou biologií a strojovým učením</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC Bioinformatics
ISSN
1471-2105
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
29
Strana od-do
"S15"
Kód UT WoS článku
000306140100015
EID výsledku v databázi Scopus
—