Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Comparative Evaluation of Gene Set Analysis Techniques in Predictive Classification of Expression Samples

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00169638" target="_blank" >RIV/68407700:21230/10:00169638 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Comparative Evaluation of Gene Set Analysis Techniques in Predictive Classification of Expression Samples

  • Popis výsledku v původním jazyce

    We demonstrate how some recently developed techniques of set level gene expression data analysis may be exploited in the context of predictive classification of gene expression samples for the tasks of attribute selection and extraction. With four benchmark gene expression datasets, we empirically test the influence of these method on the predictive accuracy of constructed classification models in a comparative setting. Our results mainly indicate that gene set selection methods (SAM GS and the global test) can boost the predictive accuracy if used with caution.

  • Název v anglickém jazyce

    A Comparative Evaluation of Gene Set Analysis Techniques in Predictive Classification of Expression Samples

  • Popis výsledku anglicky

    We demonstrate how some recently developed techniques of set level gene expression data analysis may be exploited in the context of predictive classification of gene expression samples for the tasks of attribute selection and extraction. With four benchmark gene expression datasets, we empirically test the influence of these method on the predictive accuracy of constructed classification models in a comparative setting. Our results mainly indicate that gene set selection methods (SAM GS and the global test) can boost the predictive accuracy if used with caution.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    International Conference on Bioinformatics, Computational Biology, Genomics and Chemoinformatics

  • ISBN

    978-1-60651-017-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    International Society for Research in Science and Technology (ISRST)

  • Místo vydání

    Orlando

  • Místo konání akce

    Orlando

  • Datum konání akce

    12. 7. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku