Improved Agent Based Algorithm for Vehicle Routing Problem with Time Windows using Efficient Search Diversification and Pruning Strategy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00194081" target="_blank" >RIV/68407700:21230/12:00194081 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved Agent Based Algorithm for Vehicle Routing Problem with Time Windows using Efficient Search Diversification and Pruning Strategy
Popis výsledku v původním jazyce
We suggest an improved algorithm for the vehicle routing problem with time windows (VRPTW). The algorithm is based on negotiation between a fleet of agents corresponding to the routed vehicles using a set of generic negotiation methods and a state-of-the-art insertion heuristic. A search diversification and pruning strategy is introduced which allows for a wide range of competing algorithm instances to be instantiated and efficiently managed throughout the solving process. Experimental results on the widely used Solomon's and the extended Homberger's benchmarks prove that the algorithm is broadly competitive with respect to the established centralized state-of-the-art algorithms equalling the best known solutions in 64% of the cases with an overall relative error of 2.4%, thus achieving a new best known result for an agent based algorithm to date. The vastly improved negotiation process and the inherent parallelization features provide for excellent anytime features, outperforming even
Název v anglickém jazyce
Improved Agent Based Algorithm for Vehicle Routing Problem with Time Windows using Efficient Search Diversification and Pruning Strategy
Popis výsledku anglicky
We suggest an improved algorithm for the vehicle routing problem with time windows (VRPTW). The algorithm is based on negotiation between a fleet of agents corresponding to the routed vehicles using a set of generic negotiation methods and a state-of-the-art insertion heuristic. A search diversification and pruning strategy is introduced which allows for a wide range of competing algorithm instances to be instantiated and efficiently managed throughout the solving process. Experimental results on the widely used Solomon's and the extended Homberger's benchmarks prove that the algorithm is broadly competitive with respect to the established centralized state-of-the-art algorithms equalling the best known solutions in 64% of the cases with an overall relative error of 2.4%, thus achieving a new best known result for an agent based algorithm to date. The vastly improved negotiation process and the inherent parallelization features provide for excellent anytime features, outperforming even
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LD12044" target="_blank" >LD12044: Agentní algoritmy pro autonomní podpůrné systémy v pozemní dopravě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů