Beyond Novelty Detection: Incongruent Events, when General and Specific Classifiers Disagree
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00196128" target="_blank" >RIV/68407700:21230/12:00196128 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TPAMI.2011.279" target="_blank" >http://dx.doi.org/10.1109/TPAMI.2011.279</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2011.279" target="_blank" >10.1109/TPAMI.2011.279</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Beyond Novelty Detection: Incongruent Events, when General and Specific Classifiers Disagree
Popis výsledku v původním jazyce
Unexpected stimuli are a challenge to any machine learning algorithm. Here we identify distinct types of unexpected events, when general level and specific level classifiers give conflicting predictions. We define a formal framework for the representation and processing of incongruent events: Starting from the notion of label hierarchy, we show how partial order on labels can be deduced from such hierarchies. For each event, we compute its probability in different ways, based on adjacent levels in the label hierarchy. An incongruent event is an event where the probability computed based on some more specific level is much smaller than the probability computed based on some more general level, leading to conflicting predictions. Algorithms are derived to detect incongruent events from different types of hierarchies, different applications and a variety of data types. We present promising results for the detection of novel visual and audio objects, and new patterns of motion in video. We
Název v anglickém jazyce
Beyond Novelty Detection: Incongruent Events, when General and Specific Classifiers Disagree
Popis výsledku anglicky
Unexpected stimuli are a challenge to any machine learning algorithm. Here we identify distinct types of unexpected events, when general level and specific level classifiers give conflicting predictions. We define a formal framework for the representation and processing of incongruent events: Starting from the notion of label hierarchy, we show how partial order on labels can be deduced from such hierarchies. For each event, we compute its probability in different ways, based on adjacent levels in the label hierarchy. An incongruent event is an event where the probability computed based on some more specific level is much smaller than the probability computed based on some more general level, leading to conflicting predictions. Algorithms are derived to detect incongruent events from different types of hierarchies, different applications and a variety of data types. We present promising results for the detection of novel visual and audio objects, and new patterns of motion in video. We
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1886-1901
Kód UT WoS článku
000307522700002
EID výsledku v databázi Scopus
—