Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Segmentation of Speech and Humming in Vocal Input

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00196538" target="_blank" >RIV/68407700:21230/12:00196538 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.radioeng.cz/fulltexts/2012/12_03_0923_0929.pdf" target="_blank" >http://www.radioeng.cz/fulltexts/2012/12_03_0923_0929.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Segmentation of Speech and Humming in Vocal Input

  • Popis výsledku v původním jazyce

    Non-verbal vocal interaction (NVVI) is an interaction method in which sounds other than speech produced by a human are used, such as humming. NVVI complements traditional speech recognition systems with continuous control. In order to combine the two approaches (e.g. "volume up, mmm") it is necessary to perform a speech/NVVI segmentation of the input sound signal. This paper presents two novel methods of speech and humming segmentation. The first method is based on classification of MFCC and RMS parameters using a neural network (MFCC method), while the other method computes volume changes in the signal (IAC method). The two methods are compared using a corpus collected from 13 speakers. The results indicate that the MFCC method outperforms IAC in terms of accuracy, precision, and recall.

  • Název v anglickém jazyce

    Segmentation of Speech and Humming in Vocal Input

  • Popis výsledku anglicky

    Non-verbal vocal interaction (NVVI) is an interaction method in which sounds other than speech produced by a human are used, such as humming. NVVI complements traditional speech recognition systems with continuous control. In order to combine the two approaches (e.g. "volume up, mmm") it is necessary to perform a speech/NVVI segmentation of the input sound signal. This paper presents two novel methods of speech and humming segmentation. The first method is based on classification of MFCC and RMS parameters using a neural network (MFCC method), while the other method computes volume changes in the signal (IAC method). The two methods are compared using a corpus collected from 13 speakers. The results indicate that the MFCC method outperforms IAC in terms of accuracy, precision, and recall.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Radioengineering

  • ISSN

    1210-2512

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    7

  • Strana od-do

    923-929

  • Kód UT WoS článku

    000309253000021

  • EID výsledku v databázi Scopus