Automatic detection of Parkinson's disease in running speech spoken in three different languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00237049" target="_blank" >RIV/68407700:21230/16:00237049 - isvavai.cz</a>
Výsledek na webu
<a href="http://scitation.aip.org/content/asa/journal/jasa/139/1/10.1121/1.4939739" target="_blank" >http://scitation.aip.org/content/asa/journal/jasa/139/1/10.1121/1.4939739</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1121/1.4939739" target="_blank" >10.1121/1.4939739</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic detection of Parkinson's disease in running speech spoken in three different languages
Popis výsledku v původním jazyce
The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 mel-frequency cepstral coefficients (MFCC) and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls (HC). The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.
Název v anglickém jazyce
Automatic detection of Parkinson's disease in running speech spoken in three different languages
Popis výsledku anglicky
The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 mel-frequency cepstral coefficients (MFCC) and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls (HC). The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
ISSN
0001-4966
e-ISSN
—
Svazek periodika
139
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
481-500
Kód UT WoS článku
000379568000044
EID výsledku v databázi Scopus
2-s2.0-84956810479