Voiced/unvoiced transitions in speech as a potential bio-marker to detect Parkinson's disease
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00239926" target="_blank" >RIV/68407700:21230/15:00239926 - isvavai.cz</a>
Výsledek na webu
<a href="https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2015/Orozco-Arroyave15-VTI.pdf" target="_blank" >https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2015/Orozco-Arroyave15-VTI.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Voiced/unvoiced transitions in speech as a potential bio-marker to detect Parkinson's disease
Popis výsledku v původním jazyce
Several studies have addressed the automatic classification of speakers with Parkinson's disease (PD) and healthy controls (HC). Most of the studies are based on speech recordings of sustained vowels, isolated words, and single sentences. Only few investigations have considered read texts and/or spontaneous speech. This paper addresses two main questions still open regarding the automatic analysis speech in patients with PD, (a) "Is it possible to classify PD patients and HC through running speech signals in multiple languages", and (b) "where is the information to discriminate between speech recordings of PD patients and HC" In this paper speech recordings of read texts and monologues spoken in three different languages are considered. The energy content of the borders between voiced and unvoiced sounds is modeled. According to the results with read texts it is possible to achieve accuracies ranging from 91% to 98% depending on the language. With respect to the results on monologues,
Název v anglickém jazyce
Voiced/unvoiced transitions in speech as a potential bio-marker to detect Parkinson's disease
Popis výsledku anglicky
Several studies have addressed the automatic classification of speakers with Parkinson's disease (PD) and healthy controls (HC). Most of the studies are based on speech recordings of sustained vowels, isolated words, and single sentences. Only few investigations have considered read texts and/or spontaneous speech. This paper addresses two main questions still open regarding the automatic analysis speech in patients with PD, (a) "Is it possible to classify PD patients and HC through running speech signals in multiple languages", and (b) "where is the information to discriminate between speech recordings of PD patients and HC" In this paper speech recordings of read texts and monologues spoken in three different languages are considered. The energy content of the borders between voiced and unvoiced sounds is modeled. According to the results with read texts it is possible to achieve accuracies ranging from 91% to 98% depending on the language. With respect to the results on monologues,
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
INTERSPEECH 2015
ISBN
—
ISSN
2308-457X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
95-99
Název nakladatele
ISCA - International Speech Communication Association
Místo vydání
Bochum
Místo konání akce
Dresden
Datum konání akce
6. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—