Orthocomplemented difference lattices in association with generalized rings.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00197812" target="_blank" >RIV/68407700:21230/12:00197812 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.2478/s12175-012-0064-3" target="_blank" >http://dx.doi.org/10.2478/s12175-012-0064-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/s12175-012-0064-3" target="_blank" >10.2478/s12175-012-0064-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Orthocomplemented difference lattices in association with generalized rings.
Popis výsledku v původním jazyce
Orthocomplemented difference lattices (ODLs) are orthocomplemented lattices endowed with an additional operation of "abstract symmetric difference". In studying ODLs as universal algebras or instances of quantum logics, several results have been obtained(see the references at the end of this paper where the explicite link with orthomodularity is discussed, too). Since the ODLs are "nearly Boolean", a natural question arises whether there are "nearly Boolean rings" associated with ODLs. In this paper wefind such an association - we introduce some difference ring-like algebras (the DRAs) that allow for a natural one-to-one correspondence with the ODLs. The DRAs are defined by only a few rather plausible axioms. The axioms guarantee, among others, thata DRA is a group and that the association with ODLs agrees, for the subrings of DRAs, with the famous Stone (Boolean ring) correspondence.
Název v anglickém jazyce
Orthocomplemented difference lattices in association with generalized rings.
Popis výsledku anglicky
Orthocomplemented difference lattices (ODLs) are orthocomplemented lattices endowed with an additional operation of "abstract symmetric difference". In studying ODLs as universal algebras or instances of quantum logics, several results have been obtained(see the references at the end of this paper where the explicite link with orthomodularity is discussed, too). Since the ODLs are "nearly Boolean", a natural question arises whether there are "nearly Boolean rings" associated with ODLs. In this paper wefind such an association - we introduce some difference ring-like algebras (the DRAs) that allow for a natural one-to-one correspondence with the ODLs. The DRAs are defined by only a few rather plausible axioms. The axioms guarantee, among others, thata DRA is a group and that the association with ODLs agrees, for the subrings of DRAs, with the famous Stone (Boolean ring) correspondence.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
1063-1068
Kód UT WoS článku
000312663200004
EID výsledku v databázi Scopus
—