Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Curvature Prior for MRF-based Segmentation and Shape Inpainting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00200404" target="_blank" >RIV/68407700:21230/12:00200404 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Curvature Prior for MRF-based Segmentation and Shape Inpainting

  • Popis výsledku v původním jazyce

    Most image labeling problems such as segmentation and image reconstruction are fundamentally ill-posed and suffer from ambiguities and noise. Higher order image priors encode high level structural dependencies between pixels and are key to overcoming these problems. However, these priors in general lead to computationally intractable models. This paper addresses the problem of discovering compact representations of higher order priors which allow efficient inference. We propose a framework for solving this problem which uses a recently proposed representation of higher order functions where they are encoded as lower envelopes of linear functions. Maximum a Posterior inference on our learned models reduces to minimizing a pairwise function of discrete variables, which can be done approximately using standard methods. We show that our framework can learn a compact representation that approximates a prior that encourages low curvature shapes. We evaluate the approximation accuracy, discus

  • Název v anglickém jazyce

    Curvature Prior for MRF-based Segmentation and Shape Inpainting

  • Popis výsledku anglicky

    Most image labeling problems such as segmentation and image reconstruction are fundamentally ill-posed and suffer from ambiguities and noise. Higher order image priors encode high level structural dependencies between pixels and are key to overcoming these problems. However, these priors in general lead to computationally intractable models. This paper addresses the problem of discovering compact representations of higher order priors which allow efficient inference. We propose a framework for solving this problem which uses a recently proposed representation of higher order functions where they are encoded as lower envelopes of linear functions. Maximum a Posterior inference on our learned models reduces to minimizing a pairwise function of discrete variables, which can be done approximately using standard methods. We show that our framework can learn a compact representation that approximates a prior that encourages low curvature shapes. We evaluate the approximation accuracy, discus

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/7E10044" target="_blank" >7E10044: Natural human-robot cooperation in dynamic environments</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    DAGM/OAGM 2012: Pattern Recognition - Joint 34th DAGM and 36th OAGM Symposium

  • ISBN

    978-3-642-32716-2

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    41-51

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Graz

  • Datum konání akce

    29. 8. 2012

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku