Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Increasing Robustness of the Flock of Trackers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00200611" target="_blank" >RIV/68407700:21230/12:00200611 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Increasing Robustness of the Flock of Trackers

  • Popis výsledku v původním jazyce

    The paper presents contributions to the design of the Flock of Trackers (FoT). The FoT trackers estimate the pose of the tracked object by robustly combining displacement estimates from a subset of predicted local trackers that cover the object. The first contribution, called the Cell FoT, allows local trackers to drift to points good to track. The Cell FoT was compared with the Kalal et al. Grid FoT and outperformed it on all sequences but one and for all local failure prediction methods. As a second contribution, we introduce two new predictors of local tracker failure - the neighbourhood consistency predictor (Nh) and the Markov predictor (Mp) and show that the new predictors combined with the normalized cross-correlation (NCC) predictor are more powerful and almost two times faster than the predictor based on normalized cross-correlation (NCC) and forward-backward procedure (FB). The resulting tracker equipped with the new predictors combined with the normalized cross-correlation p

  • Název v anglickém jazyce

    Increasing Robustness of the Flock of Trackers

  • Popis výsledku anglicky

    The paper presents contributions to the design of the Flock of Trackers (FoT). The FoT trackers estimate the pose of the tracked object by robustly combining displacement estimates from a subset of predicted local trackers that cover the object. The first contribution, called the Cell FoT, allows local trackers to drift to points good to track. The Cell FoT was compared with the Kalal et al. Grid FoT and outperformed it on all sequences but one and for all local failure prediction methods. As a second contribution, we introduce two new predictors of local tracker failure - the neighbourhood consistency predictor (Nh) and the Markov predictor (Mp) and show that the new predictors combined with the normalized cross-correlation (NCC) predictor are more powerful and almost two times faster than the predictor based on normalized cross-correlation (NCC) and forward-backward procedure (FB). The resulting tracker equipped with the new predictors combined with the normalized cross-correlation p

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů