Increasing Robustness of the Flock of Trackers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00200611" target="_blank" >RIV/68407700:21230/12:00200611 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Increasing Robustness of the Flock of Trackers
Popis výsledku v původním jazyce
The paper presents contributions to the design of the Flock of Trackers (FoT). The FoT trackers estimate the pose of the tracked object by robustly combining displacement estimates from a subset of predicted local trackers that cover the object. The first contribution, called the Cell FoT, allows local trackers to drift to points good to track. The Cell FoT was compared with the Kalal et al. Grid FoT and outperformed it on all sequences but one and for all local failure prediction methods. As a second contribution, we introduce two new predictors of local tracker failure - the neighbourhood consistency predictor (Nh) and the Markov predictor (Mp) and show that the new predictors combined with the normalized cross-correlation (NCC) predictor are more powerful and almost two times faster than the predictor based on normalized cross-correlation (NCC) and forward-backward procedure (FB). The resulting tracker equipped with the new predictors combined with the normalized cross-correlation p
Název v anglickém jazyce
Increasing Robustness of the Flock of Trackers
Popis výsledku anglicky
The paper presents contributions to the design of the Flock of Trackers (FoT). The FoT trackers estimate the pose of the tracked object by robustly combining displacement estimates from a subset of predicted local trackers that cover the object. The first contribution, called the Cell FoT, allows local trackers to drift to points good to track. The Cell FoT was compared with the Kalal et al. Grid FoT and outperformed it on all sequences but one and for all local failure prediction methods. As a second contribution, we introduce two new predictors of local tracker failure - the neighbourhood consistency predictor (Nh) and the Markov predictor (Mp) and show that the new predictors combined with the normalized cross-correlation (NCC) predictor are more powerful and almost two times faster than the predictor based on normalized cross-correlation (NCC) and forward-backward procedure (FB). The resulting tracker equipped with the new predictors combined with the normalized cross-correlation p
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů