Bundle Method for Structured Output Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00200618" target="_blank" >RIV/68407700:21230/12:00200618 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bundle Method for Structured Output Learning
Popis výsledku v původním jazyce
Discriminative methods for learning structured output classifiers have been gaining popularity in recent years due to their successful applications in fields like computer vision, natural language processing or bio-informatics. Learning of the structuredoutput classifiers leads to solving a convex minimization problem which is not tractable by standard algorithms. A significant effort has been put to development of specialized solvers among which the Bundle Method for Risk Minimization (BMRM) [Teo et al., 2010] is one of the most successful. The BMRM is a simplified variant of bundle methods well known in the filed of non-smooth optimization. The simplicity of the BMRM is compensated by its reduced efficiency. In this paper, we propose several improvements of the BMRM which significantly speeds up its convergence. The improvements involve i) using the prox-term known from the original bundle methods, ii) starting optimization from a non-trivial initial solution and iii) using multiple
Název v anglickém jazyce
Bundle Method for Structured Output Learning
Popis výsledku anglicky
Discriminative methods for learning structured output classifiers have been gaining popularity in recent years due to their successful applications in fields like computer vision, natural language processing or bio-informatics. Learning of the structuredoutput classifiers leads to solving a convex minimization problem which is not tractable by standard algorithms. A significant effort has been put to development of specialized solvers among which the Bundle Method for Risk Minimization (BMRM) [Teo et al., 2010] is one of the most successful. The BMRM is a simplified variant of bundle methods well known in the filed of non-smooth optimization. The simplicity of the BMRM is compensated by its reduced efficiency. In this paper, we propose several improvements of the BMRM which significantly speeds up its convergence. The improvements involve i) using the prox-term known from the original bundle methods, ii) starting optimization from a non-trivial initial solution and iii) using multiple
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů