Dead reckoning in a dynamic quadruped robot based on multimodal proprioceptive sensory information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00199258" target="_blank" >RIV/68407700:21230/13:00199258 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TRO.2012.2228309" target="_blank" >http://dx.doi.org/10.1109/TRO.2012.2228309</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TRO.2012.2228309" target="_blank" >10.1109/TRO.2012.2228309</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dead reckoning in a dynamic quadruped robot based on multimodal proprioceptive sensory information
Popis výsledku v původním jazyce
It is an important ability for any mobile robot to be able to estimate its posture and to gauge the distance it traveled. In this paper, we have addressed this problem in a dynamic quadruped robot by combining traditional state estimation methods with machine learning. We have designed and implemented a navigation algorithm for full body state (position, velocity, and attitude) estimation that uses no external reference but relies on multimodal proprioceptive sensory information only. The extended Kalman filter (EKF) was used to provide error estimation and data fusion from two independent sources of information: 1) strapdown mechanization algorithm processing raw inertial data and 2) legged odometry. We have devised a novel legged odometer that combines information from a multimodal combination of sensors (joint and pressure). We have shown our method to work for a dynamic turning gait, and we have also successfully demonstrated how it generalizes to different velocities and terrains.
Název v anglickém jazyce
Dead reckoning in a dynamic quadruped robot based on multimodal proprioceptive sensory information
Popis výsledku anglicky
It is an important ability for any mobile robot to be able to estimate its posture and to gauge the distance it traveled. In this paper, we have addressed this problem in a dynamic quadruped robot by combining traditional state estimation methods with machine learning. We have designed and implemented a navigation algorithm for full body state (position, velocity, and attitude) estimation that uses no external reference but relies on multimodal proprioceptive sensory information only. The extended Kalman filter (EKF) was used to provide error estimation and data fusion from two independent sources of information: 1) strapdown mechanization algorithm processing raw inertial data and 2) legged odometry. We have devised a novel legged odometer that combines information from a multimodal combination of sensors (joint and pressure). We have shown our method to work for a dynamic turning gait, and we have also successfully demonstrated how it generalizes to different velocities and terrains.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E10044" target="_blank" >7E10044: Natural human-robot cooperation in dynamic environments</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Robotics
ISSN
1552-3098
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
563-571
Kód UT WoS článku
000317493900020
EID výsledku v databázi Scopus
—