Maximizing Utilization in Private IaaS Clouds with Heterogenous Load through Time Series Forecasting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00207154" target="_blank" >RIV/68407700:21230/13:00207154 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.iariajournals.org/systems_and_measurements/sysmea_v6_n12_2013_paged.pdf" target="_blank" >http://www.iariajournals.org/systems_and_measurements/sysmea_v6_n12_2013_paged.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximizing Utilization in Private IaaS Clouds with Heterogenous Load through Time Series Forecasting
Popis výsledku v původním jazyce
This document presents ongoing work on creating a computing system that can run two types of workloads on a private cloud computing cluster, namely web servers and batch computing jobs, in a way that would maximize utilization of the computing infrastructure. To this end, a queue engine called Cloud Gunther has been developed. This application improves upon current practices of running batch computations in the cloud by integrating control of virval machine provisioning within the job scheduler. For managing web server workloads, we present ScaleGuru, which has been modeled after Amazon Auto Scaler for easier transition from public to private cloud. Both these tools are tested to run over the Eucalyptus cloud system. Further research has been done in the area of Time Series Forecasting, which enables to predict the load of a system based on past observations. Due to the periodic nature of the interactive load, predictions can be made in the horizon of days with reasonable accuracy. Two
Název v anglickém jazyce
Maximizing Utilization in Private IaaS Clouds with Heterogenous Load through Time Series Forecasting
Popis výsledku anglicky
This document presents ongoing work on creating a computing system that can run two types of workloads on a private cloud computing cluster, namely web servers and batch computing jobs, in a way that would maximize utilization of the computing infrastructure. To this end, a queue engine called Cloud Gunther has been developed. This application improves upon current practices of running batch computations in the cloud by integrating control of virval machine provisioning within the job scheduler. For managing web server workloads, we present ScaleGuru, which has been modeled after Amazon Auto Scaler for easier transition from public to private cloud. Both these tools are tested to run over the Eucalyptus cloud system. Further research has been done in the area of Time Series Forecasting, which enables to predict the load of a system based on past observations. Due to the periodic nature of the interactive load, predictions can be made in the horizon of days with reasonable accuracy. Two
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal On Advances in Systems and Measurements
ISSN
1942-261X
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
1&2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
149-165
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—