A Boosting Algorithm for the Classifiers in the Nurse Rostering Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00208850" target="_blank" >RIV/68407700:21230/13:00208850 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Boosting Algorithm for the Classifiers in the Nurse Rostering Problems
Popis výsledku v původním jazyce
Nurse rostering problem is a well-known combinatorial problem. It can be solved by many (meta/hyper) heuristics while these methods are based on two usual steps: generate new solutions first and then determine their quality using an objective function. Unfortunately, this process is very expensive in terms of the computational complexity. Thus, we propose a faster evaluation of the objective function based on the solution structure. The idea is to mimic the human mind because the human schedulers are able to quickly recognize an obviously bad roster using only their own experience instead of complex computing. For this purpose, a neural network as a classifier can be used not only to distinguish between good and bad solutions but also to determine howmuch good or bad the solutions are. We apply an adaptive boosting algorithm to achieve more precise classification rates too. The results from the experiments show that the proposed approaches can reduce the runtime of the scheduling algo
Název v anglickém jazyce
A Boosting Algorithm for the Classifiers in the Nurse Rostering Problems
Popis výsledku anglicky
Nurse rostering problem is a well-known combinatorial problem. It can be solved by many (meta/hyper) heuristics while these methods are based on two usual steps: generate new solutions first and then determine their quality using an objective function. Unfortunately, this process is very expensive in terms of the computational complexity. Thus, we propose a faster evaluation of the objective function based on the solution structure. The idea is to mimic the human mind because the human schedulers are able to quickly recognize an obviously bad roster using only their own experience instead of complex computing. For this purpose, a neural network as a classifier can be used not only to distinguish between good and bad solutions but also to determine howmuch good or bad the solutions are. We apply an adaptive boosting algorithm to achieve more precise classification rates too. The results from the experiments show that the proposed approaches can reduce the runtime of the scheduling algo
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7H12008" target="_blank" >7H12008: Design, Monitoring and Operation of Adaptive Networked Embedded Systems</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
POSTER 2013 - 17th International Student Conference on Electrical Engineering
ISBN
978-80-01-05242-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
Czech Technical University
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
16. 5. 2013
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—