Anomaly detection by bagging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00211170" target="_blank" >RIV/68407700:21230/13:00211170 - isvavai.cz</a>
Výsledek na webu
<a href="http://ama.imag.fr/COPEM/copem2013_proceedings.pdf" target="_blank" >http://ama.imag.fr/COPEM/copem2013_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomaly detection by bagging
Popis výsledku v původním jazyce
Many contemporary domains, e.g. network intrusion detection, fraud detection, etc., call for an anomaly detector processing a continuous stream of data. This need is driven by the high rate of their acquisition, by limited resources for storing them, orby privacy issues. The data can be also non-stationary requiring the detector to continuously adapt to their change. A good detector for these domains should therefore have a low training and classification complexity, on-line training algorithm, and, ofcourse, a good detection accuracy. This paper proposes a detector trying to meet all these criteria. The detector consists of multiple weak detectors, each implemented as a one dimensional histogram. The one-dimensional histogram was chosen because it can be efficiently created on-line, and probability estimates can be efficiently retrieved from it. This construction gives the detector linear complexity of training and classification with respect to the input dimension, number of sample
Název v anglickém jazyce
Anomaly detection by bagging
Popis výsledku anglicky
Many contemporary domains, e.g. network intrusion detection, fraud detection, etc., call for an anomaly detector processing a continuous stream of data. This need is driven by the high rate of their acquisition, by limited resources for storing them, orby privacy issues. The data can be also non-stationary requiring the detector to continuously adapt to their change. A good detector for these domains should therefore have a low training and classification complexity, on-line training algorithm, and, ofcourse, a good detection accuracy. This paper proposes a detector trying to meet all these criteria. The detector consists of multiple weak detectors, each implemented as a one dimensional histogram. The one-dimensional histogram was chosen because it can be efficiently created on-line, and probability estimates can be efficiently retrieved from it. This construction gives the detector linear complexity of training and classification with respect to the input dimension, number of sample
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GPP103%2F12%2FP514" target="_blank" >GPP103/12/P514: Detekce anomalií v reálném čase a časově nestálem prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů