Integrated Detection Network for Multiple Object Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00237809" target="_blank" >RIV/68407700:21230/15:00237809 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/B9780128025819000068" target="_blank" >http://www.sciencedirect.com/science/article/pii/B9780128025819000068</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-12-802581-9.00006-8" target="_blank" >10.1016/B978-0-12-802581-9.00006-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrated Detection Network for Multiple Object Recognition
Popis výsledku v původním jazyce
Recognizing multiple objects involves two interdependent tasks, object localization and classification. The goal of the object localization is to accurately find the object pose parameters relative to an established reference, such as the origin of the image coordinate system. The object classification assigns class labels to the objects according to the prespecified categories. Multiobject recognition has been previously solved by designing a set of individual single-object detectors or by training a combined multiobject detection and classification system. In the medical domain, these models can be further improved by relying on strong spatial prior information present in medical images of a human body. This chapter describes how the spatial prior can be used to recognize multiple anatomical structures, which results in the integrated detection network. The structures are recognized sequentially, one by one, using optimal order such that the later recognitions can benefit from constr
Název v anglickém jazyce
Integrated Detection Network for Multiple Object Recognition
Popis výsledku anglicky
Recognizing multiple objects involves two interdependent tasks, object localization and classification. The goal of the object localization is to accurately find the object pose parameters relative to an established reference, such as the origin of the image coordinate system. The object classification assigns class labels to the objects according to the prespecified categories. Multiobject recognition has been previously solved by designing a set of individual single-object detectors or by training a combined multiobject detection and classification system. In the medical domain, these models can be further improved by relying on strong spatial prior information present in medical images of a human body. This chapter describes how the spatial prior can be used to recognize multiple anatomical structures, which results in the integrated detection network. The structures are recognized sequentially, one by one, using optimal order such that the later recognitions can benefit from constr
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů