An Infrared Video Detection And Categorization System Based On Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F21%3A00356758" target="_blank" >RIV/68407700:21260/21:00356758 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.14311/NNW.2021.31.014" target="_blank" >https://doi.org/10.14311/NNW.2021.31.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2021.31.014" target="_blank" >10.14311/NNW.2021.31.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Infrared Video Detection And Categorization System Based On Machine Learning
Popis výsledku v původním jazyce
The main aim of this paper is to present a new possibility for detection and recognition of different categories of electric and conventional (equipped with combustion engine) vehicles. These possibilities are provided by use of thermal and visual video cameras and two methods of machine learning. The used methods are Haar cascade classifier and convolutional neural network (CNN). The thermal images, obtained through an infrared thermography camera, were used for the training database. The thermal cameras can complement or substitute visible spectrum of video cameras and other conventional sensors and provide detailed recognition and classification data needed for vehicle type recognition. The first listed method was used as an object detector and serves for the localization of the vehicle on the road without any further classification. The second method was trained for vehicle recognition on the thermal image database and classifies a localized object according to one of the defined categories. The results confirmed that it is possible to use infrared thermography for vehicle drive categorization according to the thermal features of vehicle exteriors together with methods of machine learning for vehicle type recognition.
Název v anglickém jazyce
An Infrared Video Detection And Categorization System Based On Machine Learning
Popis výsledku anglicky
The main aim of this paper is to present a new possibility for detection and recognition of different categories of electric and conventional (equipped with combustion engine) vehicles. These possibilities are provided by use of thermal and visual video cameras and two methods of machine learning. The used methods are Haar cascade classifier and convolutional neural network (CNN). The thermal images, obtained through an infrared thermography camera, were used for the training database. The thermal cameras can complement or substitute visible spectrum of video cameras and other conventional sensors and provide detailed recognition and classification data needed for vehicle type recognition. The first listed method was used as an object detector and serves for the localization of the vehicle on the road without any further classification. The second method was trained for vehicle recognition on the thermal image database and classifies a localized object according to one of the defined categories. The results confirmed that it is possible to use infrared thermography for vehicle drive categorization according to the thermal features of vehicle exteriors together with methods of machine learning for vehicle type recognition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TH04010481" target="_blank" >TH04010481: Spolehlivostní diagnostika technologických zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
2336-4335
Svazek periodika
2021
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
261-277
Kód UT WoS článku
000755153600002
EID výsledku v databázi Scopus
2-s2.0-85119484556