Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient inference of spatial hierarchical models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00217906" target="_blank" >RIV/68407700:21230/14:00217906 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient inference of spatial hierarchical models

  • Popis výsledku v původním jazyce

    The long term goal of artificial intelligence and computer vision is to be able to build models of the world automatically and to use them for interpretation of new situations. It is natural that such models are efficiently organized in a hierarchical manner; a model is build by sub-models, these sub-models are again build of another models, and so on. These building blocks are usually shareable; different objects may consist of the same components. In this paper, we describe a hierarchical probabilistic model for visual domain and propose a method for its efficient inference based on data partitioning and dynamic programming. We show the behaviour of the model, which is in this case made manually, and inference method on a controlled yet challenging dataset consisting of rotated, scaled and occluded letters. The experiments show that the proposed model is robust to all above-mentioned aspects.

  • Název v anglickém jazyce

    Efficient inference of spatial hierarchical models

  • Popis výsledku anglicky

    The long term goal of artificial intelligence and computer vision is to be able to build models of the world automatically and to use them for interpretation of new situations. It is natural that such models are efficiently organized in a hierarchical manner; a model is build by sub-models, these sub-models are again build of another models, and so on. These building blocks are usually shareable; different objects may consist of the same components. In this paper, we describe a hierarchical probabilistic model for visual domain and propose a method for its efficient inference based on data partitioning and dynamic programming. We show the behaviour of the model, which is in this case made manually, and inference method on a controlled yet challenging dataset consisting of rotated, scaled and occluded letters. The experiments show that the proposed model is robust to all above-mentioned aspects.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP103%2F12%2F1578" target="_blank" >GAP103/12/1578: Strukturní a sémantické modelování architektury jako problém interpretace digitálního obrazu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    VISAPP '14: Proceedings of the 9th International Conference on Computer Vision Theory and Applications, Volume 1

  • ISBN

    978-989-758-003-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    500-506

  • Název nakladatele

    SciTePress - Science and Technology Publications

  • Místo vydání

    Porto

  • Místo konání akce

    Lisabon

  • Datum konání akce

    5. 1. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku