Network Constrained Forest to Improve Gene Expression Data Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00219787" target="_blank" >RIV/68407700:21230/14:00219787 - isvavai.cz</a>
Výsledek na webu
<a href="http://radio.feld.cvut.cz/conf/poster2014/" target="_blank" >http://radio.feld.cvut.cz/conf/poster2014/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Network Constrained Forest to Improve Gene Expression Data Classification
Popis výsledku v původním jazyce
Onset and progression of genetically determined diseases depend on complex process called gene expression. Integrating genomic measurements of multiple character from multiple stages of that process should improve diagnosis and and overall comprehensionof the diseases. We propose a method, based on a concept of random forests, that utilizes traditional messenger RNA features and quite novel microRNA features. The methods integrates the features through domain knowledge in terms of interactions betweenmicroRNAs and their targeted messenger RNA, and interactions between proteins corresponding to the messenger RNA transcripts. Introducing prior knowledge should increase learning bias and consequently improve overall predictive accuracy, stability and comprehensibility of resulting model. We run several robust experiments to validate our method in comparison with state of the art methods. Our results suggest that out method in most of the cases achieves better or equal results. Hencefort
Název v anglickém jazyce
Network Constrained Forest to Improve Gene Expression Data Classification
Popis výsledku anglicky
Onset and progression of genetically determined diseases depend on complex process called gene expression. Integrating genomic measurements of multiple character from multiple stages of that process should improve diagnosis and and overall comprehensionof the diseases. We propose a method, based on a concept of random forests, that utilizes traditional messenger RNA features and quite novel microRNA features. The methods integrates the features through domain knowledge in terms of interactions betweenmicroRNAs and their targeted messenger RNA, and interactions between proteins corresponding to the messenger RNA transcripts. Introducing prior knowledge should increase learning bias and consequently improve overall predictive accuracy, stability and comprehensibility of resulting model. We run several robust experiments to validate our method in comparison with state of the art methods. Our results suggest that out method in most of the cases achieves better or equal results. Hencefort
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
POSTER 2014 - 18th International Student Conference on Electrical Engineering
ISBN
978-80-01-05499-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
Czech Technical University
Místo vydání
Prague
Místo konání akce
Praha
Datum konání akce
15. 5. 2014
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—