Safe Exploration Techniques for Reinforcement Learning - An Overview
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00223236" target="_blank" >RIV/68407700:21230/14:00223236 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Safe Exploration Techniques for Reinforcement Learning - An Overview
Popis výsledku v původním jazyce
We overview diferent approaches to safety in (semi)autonomous robotics. Particularly, we focus on how to achieve safe behavior of a robot if it is requested to perform exploration of unknown states. Presented methods are studied from the viewpoint of reinforcement learning, a partially-supervised machine learning method. Recently, it has shown to be one of the most suitable learning methods in robotics. However, to collect training data for this algorithm, the robot is required to freely explore the state space ? which can lead to possibly dangerous situations. The role of safe exploration is to provide a framework allowing exploration while preserving safety. The examined methods range from simple algorithms which utilize precise physical models to sophisticated methods based on previous experience or state prediction. Our overview also addresses the issues of how to define safety in the real-world applications. It is apparent that absolute safety is unachievable in the continuous and
Název v anglickém jazyce
Safe Exploration Techniques for Reinforcement Learning - An Overview
Popis výsledku anglicky
We overview diferent approaches to safety in (semi)autonomous robotics. Particularly, we focus on how to achieve safe behavior of a robot if it is requested to perform exploration of unknown states. Presented methods are studied from the viewpoint of reinforcement learning, a partially-supervised machine learning method. Recently, it has shown to be one of the most suitable learning methods in robotics. However, to collect training data for this algorithm, the robot is required to freely explore the state space ? which can lead to possibly dangerous situations. The role of safe exploration is to provide a framework allowing exploration while preserving safety. The examined methods range from simple algorithms which utilize precise physical models to sophisticated methods based on previous experience or state prediction. Our overview also addresses the issues of how to define safety in the real-world applications. It is apparent that absolute safety is unachievable in the continuous and
Klasifikace
Druh
V<sub>souhrn</sub> - Souhrnná výzkumná zpráva
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Počet stran výsledku
10
Místo vydání
Praha
Název nakladatele resp. objednatele
Center for Machine Perception, K13133 FEE Czech Technical University
Verze
—