Safe Exploration for Reinforcement Learning in Real Unstructured Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00230205" target="_blank" >RIV/68407700:21230/15:00230205 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Safe Exploration for Reinforcement Learning in Real Unstructured Environments
Popis výsledku v původním jazyce
In USAR (Urban Search and Rescue) missions, robots are often required to operate in an unknown environment and with imprecise data coming from their sensors. However, it is highly desired that the robots only act in a safe manner and do not perform actions that could probably make damage to them. To train some tasks with the robot, we utilize reinforcement learning (RL). This machine learning method however requires the robot to perform actions leading to unknown states, which may be dangerous. We develop a framework for training a safety function which constrains possible actions to a subset of really safe actions. Our approach utilizes two basic concepts. First, a "core" of the safety function is given by a cautious simulator and possibly also by manually given examples. Second, a classifier training phase is performed (using Neyman-Pearson SVMs), which extends the safety function to the states where the simulator fails to recognize safe states.
Název v anglickém jazyce
Safe Exploration for Reinforcement Learning in Real Unstructured Environments
Popis výsledku anglicky
In USAR (Urban Search and Rescue) missions, robots are often required to operate in an unknown environment and with imprecise data coming from their sensors. However, it is highly desired that the robots only act in a safe manner and do not perform actions that could probably make damage to them. To train some tasks with the robot, we utilize reinforcement learning (RL). This machine learning method however requires the robot to perform actions leading to unknown states, which may be dangerous. We develop a framework for training a safety function which constrains possible actions to a subset of really safe actions. Our approach utilizes two basic concepts. First, a "core" of the safety function is given by a cautious simulator and possibly also by manually given examples. Second, a classifier training phase is performed (using Neyman-Pearson SVMs), which extends the safety function to the states where the simulator fails to recognize safe states.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-13876S" target="_blank" >GA14-13876S: Strojové vnímání pro dlouhodobou autonomii mobilních robotů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVWW 2015: Proceedings of the 20th Computer Vision Winter Workshop
ISBN
978-3-85125-388-7
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
85-93
Název nakladatele
Graz University of Technology
Místo vydání
Graz
Místo konání akce
Seggau
Datum konání akce
9. 2. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—