Conformant Planning with Static Causal Laws and Negation as Failure: Decomposition of the ASP Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00227821" target="_blank" >RIV/68407700:21230/14:00227821 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conformant Planning with Static Causal Laws and Negation as Failure: Decomposition of the ASP Approach
Popis výsledku v původním jazyce
In recent years, we have seen a few attempts to use the Answer Set Programming (ASP) to solve the problem of conformant planning with the support for causal laws and negation as failure. Typically, the whole planning domain is encoded into a large ASP meta-program expressing what holds and which actions should be executed in all the time steps of a resulting plan. Answer sets of this meta-program then represent all the possible plans. Since the complexity of answer set computation is exponential in sizeof input, we propose a technique of dividing it into several smaller meta-programs - one for every state transition. Actual plan finding can then be outsourced to a graph-search algorithm. This method increases the performance of planning with ASP semantics and allows us to produce considerably longer plans. After discussing the worst-case complexity of both approaches, we introduce the prototype ASP planner GRASP that employs our suggested technique and provide the experimental compari
Název v anglickém jazyce
Conformant Planning with Static Causal Laws and Negation as Failure: Decomposition of the ASP Approach
Popis výsledku anglicky
In recent years, we have seen a few attempts to use the Answer Set Programming (ASP) to solve the problem of conformant planning with the support for causal laws and negation as failure. Typically, the whole planning domain is encoded into a large ASP meta-program expressing what holds and which actions should be executed in all the time steps of a resulting plan. Answer sets of this meta-program then represent all the possible plans. Since the complexity of answer set computation is exponential in sizeof input, we propose a technique of dividing it into several smaller meta-programs - one for every state transition. Actual plan finding can then be outsourced to a graph-search algorithm. This method increases the performance of planning with ASP semantics and allows us to produce considerably longer plans. After discussing the worst-case complexity of both approaches, we introduce the prototype ASP planner GRASP that employs our suggested technique and provide the experimental compari
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Artificial Intelligence
ISSN
0974-0635
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IN - Indická republika
Počet stran výsledku
12
Strana od-do
48-59
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—