Evaluation of the EKF-based Estimation Architectures for Data Fusion in Mobile Robots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00214002" target="_blank" >RIV/68407700:21230/15:00214002 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TMECH.2014.2311416" target="_blank" >http://dx.doi.org/10.1109/TMECH.2014.2311416</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TMECH.2014.2311416" target="_blank" >10.1109/TMECH.2014.2311416</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of the EKF-based Estimation Architectures for Data Fusion in Mobile Robots
Popis výsledku v původním jazyce
This paper presents evaluation of 4 different state estimation architectures exploiting the extended Kalman filter (EKF) for 6DOF dead reckoning of a mobile robot. The EKF is a well proven and commonly used technique for fusion of inertial data and robot?s odometry. However, different approaches to designing the architecture of the state estimator lead to different performance and computational demands. While seeking the best possible solution for the mobile robot, the nonlinear model and the error model are addressed, both with and without a complementary filter for attitude estimation. The performance is determined experimentally by means of precision of both indoor and outdoor navigation, including complex structured environment such as stairs and rough terrain. According to the evaluation, the nonlinear model combined with the complementary filter is selected as a best candidate (reaching 0.8 m RMSE and average of 4% return position error of distance driven) and implemented for rea
Název v anglickém jazyce
Evaluation of the EKF-based Estimation Architectures for Data Fusion in Mobile Robots
Popis výsledku anglicky
This paper presents evaluation of 4 different state estimation architectures exploiting the extended Kalman filter (EKF) for 6DOF dead reckoning of a mobile robot. The EKF is a well proven and commonly used technique for fusion of inertial data and robot?s odometry. However, different approaches to designing the architecture of the state estimator lead to different performance and computational demands. While seeking the best possible solution for the mobile robot, the nonlinear model and the error model are addressed, both with and without a complementary filter for attitude estimation. The performance is determined experimentally by means of precision of both indoor and outdoor navigation, including complex structured environment such as stairs and rough terrain. According to the evaluation, the nonlinear model combined with the complementary filter is selected as a best candidate (reaching 0.8 m RMSE and average of 4% return position error of distance driven) and implemented for rea
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E10044" target="_blank" >7E10044: Natural human-robot cooperation in dynamic environments</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE-ASME TRANSACTIONS ON MECHATRONICS
ISSN
1083-4435
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
985-990
Kód UT WoS článku
000352365800048
EID výsledku v databázi Scopus
2-s2.0-84908401680