Solving the Resource Constrained Project Scheduling Problem Using the Parallel Tabu Search Designed for the CUDA Platform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00221960" target="_blank" >RIV/68407700:21230/15:00221960 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jpdc.2014.11.005" target="_blank" >http://dx.doi.org/10.1016/j.jpdc.2014.11.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpdc.2014.11.005" target="_blank" >10.1016/j.jpdc.2014.11.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving the Resource Constrained Project Scheduling Problem Using the Parallel Tabu Search Designed for the CUDA Platform
Popis výsledku v původním jazyce
The Resource Constrained Project Scheduling Problem, which is considered to be difficult to tackle even for small instances, is a well-known scheduling problem in the operations research domain. To solve the problem we have proposed a parallel Tabu Search algorithm to find high quality solutions in a reasonable time. We show that our parallel Tabu Search algorithm for graphics cards (GPUs) outperforms other existing Tabu Search approaches in terms of quality of solutions and the number of evaluated schedules per second. Moreover, the algorithm for graphics cards is about 10.5/42.7 times faster (J90 benchmark instances) than the optimized parallel/sequential algorithm for the Central Processing Unit (CPU). The same quality of solutions is achieved up to5.4/22 times faster in comparison to the parallel/sequential CPU algorithm respectively. The advantages of the GPU version arise from the sophisticated data-structures and their suitable placement in the device memory, tailor-made method
Název v anglickém jazyce
Solving the Resource Constrained Project Scheduling Problem Using the Parallel Tabu Search Designed for the CUDA Platform
Popis výsledku anglicky
The Resource Constrained Project Scheduling Problem, which is considered to be difficult to tackle even for small instances, is a well-known scheduling problem in the operations research domain. To solve the problem we have proposed a parallel Tabu Search algorithm to find high quality solutions in a reasonable time. We show that our parallel Tabu Search algorithm for graphics cards (GPUs) outperforms other existing Tabu Search approaches in terms of quality of solutions and the number of evaluated schedules per second. Moreover, the algorithm for graphics cards is about 10.5/42.7 times faster (J90 benchmark instances) than the optimized parallel/sequential algorithm for the Central Processing Unit (CPU). The same quality of solutions is achieved up to5.4/22 times faster in comparison to the parallel/sequential CPU algorithm respectively. The advantages of the GPU version arise from the sophisticated data-structures and their suitable placement in the device memory, tailor-made method
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Parallel and Distributed Computing
ISSN
0743-7315
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
58-68
Kód UT WoS článku
000351482400005
EID výsledku v databázi Scopus
2-s2.0-84923783589