Non-Rigid Graph Registration using Active Testing Search
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00226745" target="_blank" >RIV/68407700:21230/15:00226745 - isvavai.cz</a>
Výsledek na webu
<a href="http://cmp.felk.cvut.cz/pub/cmp/articles/amavemig/Serradell-PAMI2015.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/amavemig/Serradell-PAMI2015.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2014.2343235" target="_blank" >10.1109/TPAMI.2014.2343235</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-Rigid Graph Registration using Active Testing Search
Popis výsledku v původním jazyce
We present a new approach for matching sets of branching curvilinear structure s that form graphs embedded in $mathbb{R}^2$ or $mathbb{R}^3$ and may be subject to deformations. Unlike earlier method s, ours does not rely on local appearance similarity nor does require a good initial alignment. Furthermore, it can cope with non-linear deformatio ns, topological differences, and partial graphs. To handle arbitrary non-linear deformations, we use Gaussian Processes to represen t the geometrical mapping relating the two graphs. In the absence of appearance information, we iteratively establish correspondences between points, update the mapping accordingly, and use it to estimate where to find the most likely correspondences that will be used in the next step. To make the computation tractable for large graphs, the set of new potential matches consider ed at each iteration is not selected at random as in many RANSAC-based algorithms. Instead, we introduce a so-called Active Testin g Search
Název v anglickém jazyce
Non-Rigid Graph Registration using Active Testing Search
Popis výsledku anglicky
We present a new approach for matching sets of branching curvilinear structure s that form graphs embedded in $mathbb{R}^2$ or $mathbb{R}^3$ and may be subject to deformations. Unlike earlier method s, ours does not rely on local appearance similarity nor does require a good initial alignment. Furthermore, it can cope with non-linear deformatio ns, topological differences, and partial graphs. To handle arbitrary non-linear deformations, we use Gaussian Processes to represen t the geometrical mapping relating the two graphs. In the absence of appearance information, we iteratively establish correspondences between points, update the mapping accordingly, and use it to estimate where to find the most likely correspondences that will be used in the next step. To make the computation tractable for large graphs, the set of new potential matches consider ed at each iteration is not selected at random as in many RANSAC-based algorithms. Instead, we introduce a so-called Active Testin g Search
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F11%2F0111" target="_blank" >GAP202/11/0111: Automatická analýza obrazů nervové tkáně ze světelné a elektronové mikroskopie</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
625-638
Kód UT WoS článku
000349626200011
EID výsledku v databázi Scopus
2-s2.0-84923013613