Classifying Direction of the Right Index Finger Movement from Delta Band Activity Using HMM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00233131" target="_blank" >RIV/68407700:21230/15:00233131 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classifying Direction of the Right Index Finger Movement from Delta Band Activity Using HMM
Popis výsledku v původním jazyce
This contribution examines the usage of low frequency components (< 5 Hz) in single trial EEG recordings of right index finger for classification of reaching and grasping movements. These components contain delta band activity and Movement Related Potentials (MRPs) associated with the movements. Time-frequency development is used to classify the movements using Hidden Markov Model based classifier. It is shown that in some cases the utilization of these components can lead to better classification thanthe previously used oscillatory activity in the and bands, which are used as reference here. The classification score has changed on average by -1.3% (-11.7% to +16.1%) compared to the referenced 5?40 Hz band. By choosing the newly examined band in subjects where there is a benefit in it, a score of 90.9% was obtained (+2.9% improvement on reference itself). The examined frequency band is optimized for each subject as the inter-subject variability of EEG plays a role here.
Název v anglickém jazyce
Classifying Direction of the Right Index Finger Movement from Delta Band Activity Using HMM
Popis výsledku anglicky
This contribution examines the usage of low frequency components (< 5 Hz) in single trial EEG recordings of right index finger for classification of reaching and grasping movements. These components contain delta band activity and Movement Related Potentials (MRPs) associated with the movements. Time-frequency development is used to classify the movements using Hidden Markov Model based classifier. It is shown that in some cases the utilization of these components can lead to better classification thanthe previously used oscillatory activity in the and bands, which are used as reference here. The classification score has changed on average by -1.3% (-11.7% to +16.1%) compared to the referenced 5?40 Hz band. By choosing the newly examined band in subjects where there is a benefit in it, a score of 90.9% was obtained (+2.9% improvement on reference itself). The examined frequency band is optimized for each subject as the inter-subject variability of EEG plays a role here.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2015 International Conference on Applied Electronics
ISBN
978-80-261-0385-1
ISSN
1803-7232
e-ISSN
—
Počet stran výsledku
4
Strana od-do
19-22
Název nakladatele
Západočeská univerzita
Místo vydání
Plzeň
Místo konání akce
Plzeň
Datum konání akce
8. 9. 2015
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—