Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00233500" target="_blank" >RIV/68407700:21230/15:00233500 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7192603" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7192603</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JBHI.2015.2467375" target="_blank" >10.1109/JBHI.2015.2467375</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases
Popis výsledku v původním jazyce
This paper evaluates the accuracy of different characterization methods for the automatic detection of multiple speech disorders. The speech impairments considered include dysphonia in people with Parkinson?s disease (PD), dysphonia diagnosed in patientswith different laryngeal pathologies (LP), and hypernasality in children with cleft lip and palate (CLP). Four different methods are applied to analyze the voice signals including noise content measures, spectral-cepstralmodeling, nonlinear features, andmeasurements to quantify the stability of the fundamental frequency. These measures are tested in six databases: three with recordings of PD patients, two with patients with LP, and one with children with CLP. The abnormal vibration of the vocal folds observed in PD patients and in people with LP is modeled using the stability measures with accuracies ranging from 81% to 99% depending on the pathology. The spectral-cepstral features are used in this paper to model the voice spectrum wit
Název v anglickém jazyce
Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases
Popis výsledku anglicky
This paper evaluates the accuracy of different characterization methods for the automatic detection of multiple speech disorders. The speech impairments considered include dysphonia in people with Parkinson?s disease (PD), dysphonia diagnosed in patientswith different laryngeal pathologies (LP), and hypernasality in children with cleft lip and palate (CLP). Four different methods are applied to analyze the voice signals including noise content measures, spectral-cepstralmodeling, nonlinear features, andmeasurements to quantify the stability of the fundamental frequency. These measures are tested in six databases: three with recordings of PD patients, two with patients with LP, and one with children with CLP. The abnormal vibration of the vocal folds observed in PD patients and in people with LP is modeled using the stability measures with accuracies ranging from 81% to 99% depending on the pathology. The spectral-cepstral features are used in this paper to model the voice spectrum wit
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F12%2F2230" target="_blank" >GAP102/12/2230: Analýza hlasu a řeči pacientů s onemocněními centrální nervové soustavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal of Biomedical and Health Informatics
ISSN
2168-2194
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1820-1828
Kód UT WoS článku
000364857000006
EID výsledku v databázi Scopus
2-s2.0-84959237081