Machine Learning Using Speech Utterances for Parkinson Disease Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F18%3A00326022" target="_blank" >RIV/68407700:21460/18:00326022 - isvavai.cz</a>
Výsledek na webu
<a href="https://ojs.cvut.cz/ojs/index.php/CTJ/article/view/4881" target="_blank" >https://ojs.cvut.cz/ojs/index.php/CTJ/article/view/4881</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Using Speech Utterances for Parkinson Disease Detection
Popis výsledku v původním jazyce
Pathophysiological recordings of patients measured from various testing methods are frequently used in the medical field for determining symptoms as well as for probability prediction for selected diseases. There are numerous symptoms among the Parkinson’s disease (PD) population, however changes in speech and articulation – is potentially the most significant biomarker. This article is focused on PD diagnosis classification based on their speech signals using pattern recognition methods (AdaBoost, Bagged trees, Quadratic SVM and k-NN). The dataset investigated in the article consists of 30 PD and 30 HC individuals’ voice measurements, with each individual being represented with 2 recordings within the dataset. Training signals for PD and HC underwent an extraction of relatively well-discriminating features relating to energy and spectral speech properties. Model implementations included a 5-fold cross validation. The accuracy of the values obtained employing the models was calculated using the confusion matrix. The average value of the overall accuracy = 82.3 % and averaged AUC = 0.88 (min. AUC = 0.86) on the available data.
Název v anglickém jazyce
Machine Learning Using Speech Utterances for Parkinson Disease Detection
Popis výsledku anglicky
Pathophysiological recordings of patients measured from various testing methods are frequently used in the medical field for determining symptoms as well as for probability prediction for selected diseases. There are numerous symptoms among the Parkinson’s disease (PD) population, however changes in speech and articulation – is potentially the most significant biomarker. This article is focused on PD diagnosis classification based on their speech signals using pattern recognition methods (AdaBoost, Bagged trees, Quadratic SVM and k-NN). The dataset investigated in the article consists of 30 PD and 30 HC individuals’ voice measurements, with each individual being represented with 2 recordings within the dataset. Training signals for PD and HC underwent an extraction of relatively well-discriminating features relating to energy and spectral speech properties. Model implementations included a 5-fold cross validation. The accuracy of the values obtained employing the models was calculated using the confusion matrix. The average value of the overall accuracy = 82.3 % and averaged AUC = 0.88 (min. AUC = 0.86) on the available data.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lékař a technika – Clinician and Technology
ISSN
0301-5491
e-ISSN
2336-5552
Svazek periodika
48
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
66-71
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85057083859