Large Scale Object and Category Localization - PhD Thesis Proposal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00235500" target="_blank" >RIV/68407700:21230/15:00235500 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large Scale Object and Category Localization - PhD Thesis Proposal
Popis výsledku v původním jazyce
The objective of this proposal is to retrieve and localize apriori unknown, given object in large image dataset. Search task is defined by an object in one or more given query images. Object content is usually selected by user drawing a bounding box in an image. Standard task is to find ``the most similar'' objects in the dataset. However, this work extends the standard definition by adding several new tasks (more suited to user preferences): (i) localize ``the most interesting'' details of query image(object); (ii) extend context of the query image by localizing additional content around it; (iii) retrieve the query object with significantly different appearance, etc. Besides defining new tasks, our work focuses on more scalable retrieval techniquesthat have significantly smaller memory footprint. This is important in order to keep up with the fast raise in number of publicly available images. We proposed methods that obtain state-of-the-art results in retrieval with compact (short
Název v anglickém jazyce
Large Scale Object and Category Localization - PhD Thesis Proposal
Popis výsledku anglicky
The objective of this proposal is to retrieve and localize apriori unknown, given object in large image dataset. Search task is defined by an object in one or more given query images. Object content is usually selected by user drawing a bounding box in an image. Standard task is to find ``the most similar'' objects in the dataset. However, this work extends the standard definition by adding several new tasks (more suited to user preferences): (i) localize ``the most interesting'' details of query image(object); (ii) extend context of the query image by localizing additional content around it; (iii) retrieve the query object with significantly different appearance, etc. Besides defining new tasks, our work focuses on more scalable retrieval techniquesthat have significantly smaller memory footprint. This is important in order to keep up with the fast raise in number of publicly available images. We proposed methods that obtain state-of-the-art results in retrieval with compact (short
Klasifikace
Druh
V<sub>souhrn</sub> - Souhrnná výzkumná zpráva
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1303" target="_blank" >LL1303: Vyhledávání vizuálních kategorií ve velkém množství obrázků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Počet stran výsledku
90
Místo vydání
Praha
Název nakladatele resp. objednatele
Center for Machine Perception, K13133 FEE Czech Technical University
Verze
—