Combining online learning and equilibrium computation in security games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00237769" target="_blank" >RIV/68407700:21230/15:00237769 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-25594-1_8" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-25594-1_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-25594-1_8" target="_blank" >10.1007/978-3-319-25594-1_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining online learning and equilibrium computation in security games
Popis výsledku v původním jazyce
Game-theoretic analysis has emerged as an important method for making resource allocation decisions in both infrastructure protection and cyber security domains. However, static equilibrium models defined based on inputs from domain experts have weaknesses; they can be inaccurate, and they do not adapt over time as the situation (and adversary) evolves. In cases where there are frequent interactions with an attacker, using learning to adapt to an adversary revealed behavior may lead to better solutionsin the long run. However, learning approaches need a lot of data, may perform poorly at the start, and may not be able to take advantage of expert analysis. We explore ways to combine equilibrium analysis with online learning methods with the goal of gaining the advantages of both approaches. We present several hybrid methods that combine these techniques in different ways, and empirically evaluated the performance of these methods in a game that models a border patrolling scenario.
Název v anglickém jazyce
Combining online learning and equilibrium computation in security games
Popis výsledku anglicky
Game-theoretic analysis has emerged as an important method for making resource allocation decisions in both infrastructure protection and cyber security domains. However, static equilibrium models defined based on inputs from domain experts have weaknesses; they can be inaccurate, and they do not adapt over time as the situation (and adversary) evolves. In cases where there are frequent interactions with an attacker, using learning to adapt to an adversary revealed behavior may lead to better solutionsin the long run. However, learning approaches need a lot of data, may perform poorly at the start, and may not be able to take advantage of expert analysis. We explore ways to combine equilibrium analysis with online learning methods with the goal of gaining the advantages of both approaches. We present several hybrid methods that combine these techniques in different ways, and empirically evaluated the performance of these methods in a game that models a border patrolling scenario.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Decision and Game Theory for Security
ISBN
978-3-319-25593-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
20
Strana od-do
130-149
Název nakladatele
Springer
Místo vydání
London
Místo konání akce
London
Datum konání akce
4. 11. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—