Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust Representation for Domain Adaptation in Network Security

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00239342" target="_blank" >RIV/68407700:21230/15:00239342 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-23461-8_8" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-23461-8_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-23461-8_8" target="_blank" >10.1007/978-3-319-23461-8_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust Representation for Domain Adaptation in Network Security

  • Popis výsledku v původním jazyce

    The goal of domain adaptation is to solve the problem of different joint distribution of observation and labels in the training and testing data sets. This problem happens in many practical situations such as when a malware detector is trained from labeled datasets at certain time point but later evolves to evade detection. We solve the problem by introducing a new representation which ensures that a conditional distribution of the observation given labels is the same. The representation is computed forbags of samples (network traffic logs) and is designed to be invariant under shifting and scaling of the feature values extracted from the logs and under permutation and size changes of the bags. The invariance of the representation is achieved by relying on a self-similarity matrix computed for each bag. In our experiments, we will show that the representation is effective for training detector of malicious traffic in large corporate networks. Compared to the case without domain adapta

  • Název v anglickém jazyce

    Robust Representation for Domain Adaptation in Network Security

  • Popis výsledku anglicky

    The goal of domain adaptation is to solve the problem of different joint distribution of observation and labels in the training and testing data sets. This problem happens in many practical situations such as when a malware detector is trained from labeled datasets at certain time point but later evolves to evade detection. We solve the problem by introducing a new representation which ensures that a conditional distribution of the observation given labels is the same. The representation is computed forbags of samples (network traffic logs) and is designed to be invariant under shifting and scaling of the feature values extracted from the logs and under permutation and size changes of the bags. The invariance of the representation is achieved by relying on a self-similarity matrix computed for each bag. In our experiments, we will show that the representation is effective for training detector of malicious traffic in large corporate networks. Compared to the case without domain adapta

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Machine Learning and Knowledge Discovery in Databases, Part III

  • ISBN

    978-3-319-23460-1

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    17

  • Strana od-do

    116-132

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Porto

  • Datum konání akce

    7. 9. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000363667400011