Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Consistency of structured output learning with missing labels

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00240179" target="_blank" >RIV/68407700:21230/15:00240179 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Consistency of structured output learning with missing labels

  • Popis výsledku v původním jazyce

    In this paper we study statistical consistency of partial losses suitable for learning structured output predictors from examples containing missing labels. We provide sufficient conditions on data generating distribution which admit to prove that the expected risk of the structured predictor learned by minimizing the partial loss converges to the optimal Bayes risk defined by an associated complete loss. We define a concept of surrogate classification calibrated partial losses which are easier to optimize yet their minimization preserves the statistical consistency. We give some concrete examples of surrogate partial losses which are classification calibrated. In particular, we show that the ramp-loss which is in the core of many existing algorithms is classification calibrated.

  • Název v anglickém jazyce

    Consistency of structured output learning with missing labels

  • Popis výsledku anglicky

    In this paper we study statistical consistency of partial losses suitable for learning structured output predictors from examples containing missing labels. We provide sufficient conditions on data generating distribution which admit to prove that the expected risk of the structured predictor learned by minimizing the partial loss converges to the optimal Bayes risk defined by an associated complete loss. We define a concept of surrogate classification calibrated partial losses which are easier to optimize yet their minimization preserves the statistical consistency. We give some concrete examples of surrogate partial losses which are classification calibrated. In particular, we show that the ramp-loss which is in the core of many existing algorithms is classification calibrated.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 7th Asian Conference on Machine Learning

  • ISBN

  • ISSN

    1532-4435

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

    81-95

  • Název nakladatele

    Microtome Publishing

  • Místo vydání

    Brookline

  • Místo konání akce

    Hong Kong

  • Datum konání akce

    20. 11. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku