A Novel Approach for Nurse Rerostering based on a Parallel Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00233864" target="_blank" >RIV/68407700:21230/16:00233864 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ejor.2015.11.022" target="_blank" >http://dx.doi.org/10.1016/j.ejor.2015.11.022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejor.2015.11.022" target="_blank" >10.1016/j.ejor.2015.11.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Approach for Nurse Rerostering based on a Parallel Algorithm
Popis výsledku v původním jazyce
This paper addresses the Nurse Rerostering Problem (NRRP) that arises when a roster is disrupted by unexpected circumstances. The objective is to find a feasible roster having the minimal number of changes with respect to the original one. The problem is solved by a parallel algorithm executed on a Graphics Processing Unit (GPU) to significantly accelerate its solution. To the best of our knowledge, this is the first parallel algorithm solving the NRRP on GPU. The core concept is a unique problem decomposition allowing efficient parallelization. Two parallel algorithms, homogeneous and heterogeneous, are proposed (available online), and their performance evaluated on benchmark datasets in terms of quality of the results compared to the state-of-the-art results and speedup. In general, higher acceleration was obtained by the homogeneous model with speedup 12.6 and 17.7 times on the NRRP dataset with 19 and 32 nurses respectively. These results encourage further research on parallel algorithms to solve Operational Research problems.
Název v anglickém jazyce
A Novel Approach for Nurse Rerostering based on a Parallel Algorithm
Popis výsledku anglicky
This paper addresses the Nurse Rerostering Problem (NRRP) that arises when a roster is disrupted by unexpected circumstances. The objective is to find a feasible roster having the minimal number of changes with respect to the original one. The problem is solved by a parallel algorithm executed on a Graphics Processing Unit (GPU) to significantly accelerate its solution. To the best of our knowledge, this is the first parallel algorithm solving the NRRP on GPU. The core concept is a unique problem decomposition allowing efficient parallelization. Two parallel algorithms, homogeneous and heterogeneous, are proposed (available online), and their performance evaluated on benchmark datasets in terms of quality of the results compared to the state-of-the-art results and speedup. In general, higher acceleration was obtained by the homogeneous model with speedup 12.6 and 17.7 times on the NRRP dataset with 19 and 32 nurses respectively. These results encourage further research on parallel algorithms to solve Operational Research problems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
—
Svazek periodika
251
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
624-639
Kód UT WoS článku
000378100800023
EID výsledku v databázi Scopus
2-s2.0-84960381470