Towards Formal Interpretation of Linear Models Learnt from Genome-wide Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00243199" target="_blank" >RIV/68407700:21230/16:00243199 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Formal Interpretation of Linear Models Learnt from Genome-wide Data
Popis výsledku v původním jazyce
Current high-throughput technologies lead to the boost of omics data with thousands of features measured in parallel. The phenotype specific markers are learned from the data to better understand the disease mechanism and to build predictive models. However, the learning is prone to overfitting, caused by a small sample size and large feature space dimension. Consequently, resulting models are inaccurate and difficult to interpret due to the complex nature of omics processes. In this paper we present the discoveries and nuggets we have made by tuning regularization parameters of our method we have recently developed. We extracted nuggets supported by relevant literature record. The main contribution is that these nuggets are relevant to potentially causal mutations, though extracted from solely gene expression, i.e. non-mutational data.
Název v anglickém jazyce
Towards Formal Interpretation of Linear Models Learnt from Genome-wide Data
Popis výsledku anglicky
Current high-throughput technologies lead to the boost of omics data with thousands of features measured in parallel. The phenotype specific markers are learned from the data to better understand the disease mechanism and to build predictive models. However, the learning is prone to overfitting, caused by a small sample size and large feature space dimension. Consequently, resulting models are inaccurate and difficult to interpret due to the complex nature of omics processes. In this paper we present the discoveries and nuggets we have made by tuning regularization parameters of our method we have recently developed. We extracted nuggets supported by relevant literature record. The main contribution is that these nuggets are relevant to potentially causal mutations, though extracted from solely gene expression, i.e. non-mutational data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 20th International Scientific Student Conferenece POSTER 2016
ISBN
978-80-01-05950-0
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
Czech Technical University in Prague
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
24. 5. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—