Sparse Omics-network Regularization to Increase Interpretability and Performance of Linear Classification Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00234068" target="_blank" >RIV/68407700:21230/15:00234068 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse Omics-network Regularization to Increase Interpretability and Performance of Linear Classification Models
Popis výsledku v původním jazyce
Current high-throughput technologies lead to the boost of omics data with thousands of features measured in parallel. The phenotype specific markers are learned from the data to better understand the disease mechanism and to build predictive models. However, the learning is prone to overfitting, caused by a small sample size and large feature space dimension. Consequently, resulting models are inaccurate and difficult to interpret due to the complex nature of omics processes. In this paper, we propose a methodology for learning simple yet biologically meaningful linear classification models. A linear support vector machine is trained; the learning is regularized by prior knowledge. Regularization parameters enable the expert to operatively adjust the interpretation of the models and their conformity with recent domain research while maintaining their accuracy. We performed robust experiments showing empirical validity of our methodology. In the study related to myelodysplastic syndrome we demonstrate the performance and interpretation of disease classification models. These models are consistent with recent progress in myelodysplastic syndrome research.
Název v anglickém jazyce
Sparse Omics-network Regularization to Increase Interpretability and Performance of Linear Classification Models
Popis výsledku anglicky
Current high-throughput technologies lead to the boost of omics data with thousands of features measured in parallel. The phenotype specific markers are learned from the data to better understand the disease mechanism and to build predictive models. However, the learning is prone to overfitting, caused by a small sample size and large feature space dimension. Consequently, resulting models are inaccurate and difficult to interpret due to the complex nature of omics processes. In this paper, we propose a methodology for learning simple yet biologically meaningful linear classification models. A linear support vector machine is trained; the learning is regularized by prior knowledge. Regularization parameters enable the expert to operatively adjust the interpretation of the models and their conformity with recent domain research while maintaining their accuracy. We performed robust experiments showing empirical validity of our methodology. In the study related to myelodysplastic syndrome we demonstrate the performance and interpretation of disease classification models. These models are consistent with recent progress in myelodysplastic syndrome research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2014 IEEE International Conference on Bioinformatics and Biomedicine
ISBN
978-1-4673-6798-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
615-620
Název nakladatele
IEEE
Místo vydání
Piscataway (New Jersey)
Místo konání akce
Washington
Datum konání akce
9. 11. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—