Sparse Omics-network Regularization to Increase Interpretability and Performance of SVM-based Predictive Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00234069" target="_blank" >RIV/68407700:21230/15:00234069 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse Omics-network Regularization to Increase Interpretability and Performance of SVM-based Predictive Models
Popis výsledku v původním jazyce
To fully profit from development of high-throughput omics technologies, there is a strict need for accurate, stable and comprehensible biomarkers. The biomarkers are features of mostly molecular character, which enable to predict end interpret the individual?s state. However, the task of highthroughput data analysis is still challenging. Small sample size together large feature space often causes overfitting. Next, resulting model are difficult to interpret due to complex nature of omics processes. In this paper we propose a framework for effective implementation of large scale optimization problem within machine learning complex. The core algorithm is intended to improve SVM based linear models of gene expression as to the accuracy and especially thecomprehensibility. The algorithm, called SNSVM, uses regularization to achieve these objectives. The regularization is implemented through prior known feature interactions and additional sparsity term. The results suggest that prior knowl
Název v anglickém jazyce
Sparse Omics-network Regularization to Increase Interpretability and Performance of SVM-based Predictive Models
Popis výsledku anglicky
To fully profit from development of high-throughput omics technologies, there is a strict need for accurate, stable and comprehensible biomarkers. The biomarkers are features of mostly molecular character, which enable to predict end interpret the individual?s state. However, the task of highthroughput data analysis is still challenging. Small sample size together large feature space often causes overfitting. Next, resulting model are difficult to interpret due to complex nature of omics processes. In this paper we propose a framework for effective implementation of large scale optimization problem within machine learning complex. The core algorithm is intended to improve SVM based linear models of gene expression as to the accuracy and especially thecomprehensibility. The algorithm, called SNSVM, uses regularization to achieve these objectives. The regularization is implemented through prior known feature interactions and additional sparsity term. The results suggest that prior knowl
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 19th International Scientific Student Conferenece POSTER 2015
ISBN
978-80-01-05499-4
ISSN
—
e-ISSN
—
Počet stran výsledku
1
Strana od-do
—
Název nakladatele
Czech Technical University in Prague
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
14. 5. 2015
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—