Secure Multi-Agent Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00302397" target="_blank" >RIV/68407700:21230/16:00302397 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?doid=2970030.2970042" target="_blank" >https://dl.acm.org/citation.cfm?doid=2970030.2970042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2970030.2970042" target="_blank" >10.1145/2970030.2970042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Secure Multi-Agent Planning
Popis výsledku v původním jazyce
Multi-agent planning using MA-STRIPS-related models is often motivated by the preservation of private information. Such motivation is not only natural for multi-agent systems, but is one of the main reasons, why multi-agent planning problems cannot be solved centrally. Although the motivation is common in the literature, formal treatment of privacy is mostly missing. An exception is a definition of two extreme concepts, weak and strong privacy. In this paper, we first analyze privacy leakage in the terms of secure Multi-Party Computation and Quantitative Information Flow. Then, we follow by analyzing privacy leakage of the most common MAP paradigms. Finally, we propose a new theoretical class of secure MAP algorithms and show how the existing techniques can be modified in order to fall in the proposed class.
Název v anglickém jazyce
Secure Multi-Agent Planning
Popis výsledku anglicky
Multi-agent planning using MA-STRIPS-related models is often motivated by the preservation of private information. Such motivation is not only natural for multi-agent systems, but is one of the main reasons, why multi-agent planning problems cannot be solved centrally. Although the motivation is common in the literature, formal treatment of privacy is mostly missing. An exception is a definition of two extreme concepts, weak and strong privacy. In this paper, we first analyze privacy leakage in the terms of secure Multi-Party Computation and Quantitative Information Flow. Then, we follow by analyzing privacy leakage of the most common MAP paradigms. Finally, we propose a new theoretical class of secure MAP algorithms and show how the existing techniques can be modified in order to fall in the proposed class.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-20433Y" target="_blank" >GJ15-20433Y: Heuristické prohledávání pro multiagentní a faktorové plánování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 1st International Workshop on AI for Privacy and Security
ISBN
978-1-4503-4304-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Hague
Datum konání akce
29. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—