Quantifying privacy leakage in multi-agent planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00319234" target="_blank" >RIV/68407700:21230/18:00319234 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?id=3133326" target="_blank" >https://dl.acm.org/citation.cfm?id=3133326</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3133326" target="_blank" >10.1145/3133326</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantifying privacy leakage in multi-agent planning
Popis výsledku v původním jazyce
Multi-agent planning using MA-STRIPS-related models is often motivated by the preservation of private information. Such a motivation is not only natural for multi-agent systems but also is one of the main reasons multi-agent planning problems cannot be solved with a centralized approach. Although the motivation is common in the literature, the formal treatment of privacy is often missing. In this article, we expand on a privacy measure based on information leakage introduced in previous work, where the leaked information is measured in terms of transition systems represented by the public part of the problem with regard to the information obtained during the planning process. Moreover, we present a general approach to computing privacy leakage of search-based multi-agent planners by utilizing search-tree reconstruction and classification of leaked superfluous information about the applicability of actions. Finally, we present an analysis of the privacy leakage of two well-known algorithms-multi-agent forward search (MAFS) and Secure-MAFS- both in general and on a particular example. The results of the analysis show that Secure-MAFS leaks less information than MAFS.
Název v anglickém jazyce
Quantifying privacy leakage in multi-agent planning
Popis výsledku anglicky
Multi-agent planning using MA-STRIPS-related models is often motivated by the preservation of private information. Such a motivation is not only natural for multi-agent systems but also is one of the main reasons multi-agent planning problems cannot be solved with a centralized approach. Although the motivation is common in the literature, the formal treatment of privacy is often missing. In this article, we expand on a privacy measure based on information leakage introduced in previous work, where the leaked information is measured in terms of transition systems represented by the public part of the problem with regard to the information obtained during the planning process. Moreover, we present a general approach to computing privacy leakage of search-based multi-agent planners by utilizing search-tree reconstruction and classification of leaked superfluous information about the applicability of actions. Finally, we present an analysis of the privacy leakage of two well-known algorithms-multi-agent forward search (MAFS) and Secure-MAFS- both in general and on a particular example. The results of the analysis show that Secure-MAFS leaks less information than MAFS.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-20433Y" target="_blank" >GJ15-20433Y: Heuristické prohledávání pro multiagentní a faktorové plánování</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Internet Technology
ISSN
1533-5399
e-ISSN
1557-6051
Svazek periodika
18
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000433486600003
EID výsledku v databázi Scopus
2-s2.0-85041702754