The limits of strong privacy preserving multi-agent planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315598" target="_blank" >RIV/68407700:21230/17:00315598 - isvavai.cz</a>
Výsledek na webu
<a href="https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15754" target="_blank" >https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15754</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The limits of strong privacy preserving multi-agent planning
Popis výsledku v původním jazyce
Multi-agent planning using MA-STRIPS-related models is often motivated by the preservation of private information. Such motivation is not only natural for multi-agent systems, but it is one of the main reasons, why multi-agent planning (MAP) problems cannot be solved centrally. In this paper, we analyze privacy-preserving multi-agent planning (PP-MAP) from the perspective of secure multiparty computation (MPC). We discuss the concept of strong privacy and its implications and present two variants of a novel planner, provably strong privacy-preserving in general. As the main contribution, we formulate the limits of strong privacy-preserving planning in the terms of privacy, completeness and efficiency and show that, for a wide class of planning algorithms, all three properties are not achievable at once. Moreover, we provide a restricted variant of strong privacy based on equivalence classes of planning problems and show that an efficient, complete and strong privacy-preserving planner exists for such restriction.
Název v anglickém jazyce
The limits of strong privacy preserving multi-agent planning
Popis výsledku anglicky
Multi-agent planning using MA-STRIPS-related models is often motivated by the preservation of private information. Such motivation is not only natural for multi-agent systems, but it is one of the main reasons, why multi-agent planning (MAP) problems cannot be solved centrally. In this paper, we analyze privacy-preserving multi-agent planning (PP-MAP) from the perspective of secure multiparty computation (MPC). We discuss the concept of strong privacy and its implications and present two variants of a novel planner, provably strong privacy-preserving in general. As the main contribution, we formulate the limits of strong privacy-preserving planning in the terms of privacy, completeness and efficiency and show that, for a wide class of planning algorithms, all three properties are not achievable at once. Moreover, we provide a restricted variant of strong privacy based on equivalence classes of planning problems and show that an efficient, complete and strong privacy-preserving planner exists for such restriction.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-20433Y" target="_blank" >GJ15-20433Y: Heuristické prohledávání pro multiagentní a faktorové plánování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings International Conference on Automated Planning and Scheduling, ICAPS
ISBN
978-1-57735-789-6
ISSN
2334-0835
e-ISSN
—
Počet stran výsledku
9
Strana od-do
297-305
Název nakladatele
Association for the Advancement of Artificial Intelligence (AAAI)
Místo vydání
Palo Alto, California
Místo konání akce
Pittsburgh
Datum konání akce
18. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—